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A COMPUTER PROGRAM FOR THE GEOMETRICALLY 

NONLINEAR STATIC AND DYNAMIC ANALYSIS OF ARBITRARILY 

LOADED SHELLS OF REVOLUTION, THEORY AND USERS MANUAL 

by  Robert E .  Ball 

SUMMARY 

A d i g i t a l  computer  program known as SATANS - S t a t i c  and Transient 
- Analysis , Nonlinear , Shel l s ,   fo r   the   geometr ica l lynonl inear  s t a t i c  and 
dynamic reTponse  of aFb i t r a r i l y  loaded she l l s  of revolution i s  presented. 
Instruct ions  for   the  preparat ion  of   the  input   data   cards  and other  
information  necessary  for  the  operation  of  the program are   descr ibed   in  
d e t a i l  and two sample  problems are  included. The governing p a r t i a l  
differential   equations are based upon Sanders '   nonlinear  thin  shell  
theory  for  the  conditions  of  small   strains and moderately  small  rotations. 
The governing  equations are reduced t o  uncoupled sets of  four  l inear,  
second order ,   par t ia l   d i f ferent ia l   equat ions  in   the  meridional  and time 
coordinates by expanding t h e  dependent ca r i ab le s   i n  a Four ie r   s ine   o r  
cosine series in   the  c i rcumferent ia l   coordinate  and t rea t ing   the   nonl inear  
modal coupling terms as  pseudo loads,  The der ivat ives   with  respect   to  
the  meridional  coordinate are approximated  by cen t r a l   f i n i t e   d i f f e rences ,  
and the  displacement  accelerations  are  approximated by the   imp l i c i t  
Houbolt  backward difference scheme with a constant  t ime  interval.  A t  
every  load  step  or time s t e p  each set  of  difference  equations i s  repeatedly 
solved,  using an elimination method, u n t i l   a l l   s o l u t i o n s  have  converged. 
A l l  geometric  and  material  properties  of  the  shell  are  axisymmetric,  but 
may vary  along  the  shell  mer'clian. The applied  load may cons is t  of any 
combination  of  pressure  load&,  temperature  distributions and i n i t i a l  
condi t ions  that   are  symmetric about a datum meridional  plane. The s h e l l  
material is i so t rop ic ,   bu t   t he   e l a s t i c  modulus may vary  through  the 
thickness.  The boundaries  of  the  shell  may be  closed, free,  f ixed ,   o r  
e l a s t i ca l ly   r e s t r a ined .  The program i s  coded i n   t h e  FORTRAN I V  language 
and i s  dimensioned to   a l low a maximum of  10 arbitrary  Fourier  harmonics. 
and a maximum product  of  the  total  number of  meridional  stations and t h e  
t o t a l  number of  Fourier  harmonics  of 200. The program requires  155,000 
bytes  of  core  storage. 
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INTRODUCTION 

The  design  of  many  shell  structures  is  influenced by the  geometrically 
nonlinear  response  of  the  shell  when  subjected to static  and/or  dynamic 
loads. As a  consequence,  a  number of investigations  have  been  devoted 
to the  study of the  buckling  phenomenon  exhibited  by  shells. Most of 
the  early  works  examine  the  behavior of the  shallow  spherical  cap,  the 
truncated  cone,  and  the  cylinder  under  axisymmetric  loads. As a  con- 
sequence  of  the  lack  of  information  on  the  axisymmetric  response  of 
shells  with  other  meridional  geometries  and  on  the  response  of  shells 
subjected  to  asymmetric  loads,  a  computer  program  for  the  geometrically 
nonlinear  static  and  dynamic  response  of  arbitrarily  loaded  shells  of 
revolution  has  been  developed.  The  dynamic  analysis  capability  is  a 
recent  extension  of  the  program  developed by the  author  for  the  n n- 
linear  static  analysis  of  arbitrarily  loaded  shells  of  revolution e1 3 . 
The  program can be  used  to  analyze  any  shell  of  revolution  for  which  the 
following  conditions  hold: 

1) The  geometric  and  material  properties  of the  shell  are  axi- 
symmetric,  but  may  vary  along  the  shell  meridian. 

2) The  applied  pressure  and  temperature  distributions  and  initial 
conditions  are  symmetric  about  a  datum  meridional  plane. 

3) The  shell  material  is  isotropic,  but  the  modulus  of  elasticity 
may  vary  through  the  thickness.  Poisson's  ratio  is  constant. 

4) The  boundaries  of  the  shell  may  be  closed,  free,  fixed, or 
elastically  restrained. 

The  governing  partial  differential  equations  are  based  upon  Sanders' 
nonlinear  thin  shell  theor or the  condition of  small  strains  and 
moderately  small  rotations b S  . The  inplane  and  normal  inertial  forces 
are  accounted  for,  but  the  rotary  inertial  terms  are  neglected.  The 
set  of  governing  nonlinear  partial  differential  equations  is  reduced 
to  an  infinite  number  of  sets  of four second-order  differential 
equations  in  the  meridional  and  time  coordinates by expanding  all 
dependent  variables  in  a  sine or cosine  series  in  terms  of  the  cir- 
cumferential  coordinate.  The  sets  are  uncoupled  by  utilizing  appro- 
priate  trigonometric  identities  and  by  treating  the  nonlinear  coupling 
terms  as  pseudo  loads.  The  meridional  derivatives  are  replaced  by 
the  conventional  central  finite  difference  approximations,  and  the 
displacement  accelerations  a  e  approximated  by  the  implicit  Houbolt 
backward  differencing  scheme €3 1 . This  leads  to  sets of algebraic 
equations  in  terms  of  the  dependent  variables  and  the  Fourier  index. 
At each  load or time  step,  an  estimate  of  the  solution  is  obtained 
by  extrapolation  from  the  solutions  at  the  previous  load or time  ste 
The  sets  of  algebraic  equations  are  repeatedly  solved  using  Potters I P h  

form  of  Gaussian  elimination,  and  the  pseudo  loads  are  recomputed, 
until  the  solution  converges. 

2 



An automatic  variable  load  incrementing  routine  is  included  in  the 
program  for  the  static  analysis.  When  the  number of iterations  are 
small  the  load  is  incremented  in  equal  steps. As the  nonlinear  terms 
become  large,  and  the  number  of  iterationsexceeds a prescribed  maximum, 
the  incremental  load  is  reduced  by a factor of five. Any number of 
increment  reductions  can  be  made. The load is continually  increased 
until  either  the  prescribed  maximum  number of load  steps or  increment 
reductions  have  been  taken.  Post-buckling  behavior  cannot  be  determined 
in  the  static  analysis  because  of  the  method of solution  employed. 

This  report  contains a description of the  theory,  the  method  of 
solution,  instructions  for  the  preparation of  the  input  data  cards, 
and  other  information  necessary  for  the  operation of the  program. Two 
sample  problems  are  included  to  illustrate  the  data  preparation  and 
output  format. For additional  information  concerning  the  accuracy  and 
applicability of the  program  refer  to  references [SI and [ 6 ] .  

3 



SYMBOIS 

reference  length 

inplane  stiffness , /(l-v2) 

nondimensional  inplane  stiffness, B/(E h ) 

bending  stiffness, 2 Ed5/(1-J) 

nondimensional  bending  stiffness, D/  (E h ) 

elastic  modulus 

reference  elastic  modulus 

= nondimensional  Fourier  coefficients  for  the  reference 

0 0  

3 
0 0  

surface  strains , equations (32) 
nondimensional  Fourier  coefficient  for  the  transverse 
force , equations (32) 
nondimensional  Fourier  coefficient  for  the  effective 
transverse  force, 8 /(a h ) 

thickness 

reference  thickness 

last  meridian  station  on  the  shell 

s 0 0  

= nondimensional  Fourier  coefficients  for  the  bending 
strains , equations (32) 

= bending  and  twisting  moments  per  unit  length 

= mass density of the  shell  material 

= nondimensional  Fourier  coefficients  for  bending  and 
twisting  moments , equations (32) 

nondimensional  Fourier  coefficient for the  thermal 
bending  moment,  equation (32) 

= membrane  forces  per  unit  length 

effective  shear  force,  equation (14) 

n = Fourier  index 
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p,p,,pe = nondimensional  Fourier  coefficients for the  components 
of the  pressure  load,  equations (32) 

&sYQ0 = transverse  forces  per  unit  length 
A 

QS 
= effective  transverse  force,  equation (1%) 

qs,qO,q = meridional,  circumferential,  and normal components of 
applied  pressure  load 

Rs,Re = principal  radii of curvature 

r = normal  distance from the  axis of the  shell 

S = meridional  shell  coordinate 

T = time 

TO 

t = nondimensional  time,  T/To 

= reference  time 

= nondimensional  Fourier  coefficients  for  membrane 
tsyteytse forces,  equations (32) 

= nondimensional  Fourier  coefficient for the  effective 
shear  force,  8se/(ooho) 

tT = nondimensional  Fourier  coefficient fo r  the  thermal  membrane 
force,  equations (32) 

U,V = displacements  tangent  to  the  meridian  and  to  the  parallel 
circle  respectively. 

u,v = nondimensional  Fourier  coefficients for the  displacements 
tangent  to  the  meridian  and  to  the  parallel  circle 
respectively,  equations (32) 

w = displacement  normal  to  the  reference  surface 

W = nondimensional  Fourier  coefficient for the  displacement 
normal  to  the  reference  surface,  equations (32) 

CY = coefficient of thermal  expansion 

@s,@O,@,@sO = nondimensional  coefficients f o r  the  nonlinear  terms 
in  the  strain-displacement  relations,  equations 
(20a) and (20c) 
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Y = P ' / P  

A = nondimensional  distance  between  stations,  meridian 
length/a/ (K"1) 

6 t  = nondimensional  time  interval 

€s , €08) €se  = reference  surface  strains , equations ( 5 )  

€T 

5 = coordinate  normal t o  the  reference  surface 

= thermal  membrane  force,  equation (Ec) 

= nondimensional  coefficients  for  the  nonlinear  terms  in 
ISs 'Iey 8 the  equilibrium  equations,  equations  (20c) 

0 = circumferential  angle 

%s,%e, se 

3 C ~ y H 0 ' 3 C ~ 0  = bending  strains,  equations ( 6 )  

KT = thermal  bending  moment,  equation (Ed) 

= nondimensional mass , a2smdc/  (hoEoTo ) CL 

V = Poisson's  ratio 

2 

5 = nondimensional  meridional  coordinate , s/a 
P = nondimensional  radius,  r/a 

OO 

u)s , 

= reference  stress  level 

= nondimensional  curvatures, a/Rs, "/Re 

m ,'De,'D " S 
= reference  surface  rotations,  equations (7) 

cp,,rpe,cp = nondimensional  Fourier  coefficients  for  the  rotations, 
equations (32) 

7 = local  temperature  change 
.. 

., 
((n)) = Fourier  series  coefficient 
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MATRICJS 

A,B,E,c 

x 

Z 

= 4x4 matrices,  equations (2%) and (2%) 

= 4x4 matrices,  reference [1] 

= 1x4 column matrices,  reference [1] 

= 1x4 column matrices,  equations (2%) and (2%) 

= 1x4 boundary condition  matrix 

= 4x4 matrices,  equations (30)  

= 1x4 column matrix,  equations  (29a) and (31a) 

= lr,4 column matrix  containing  the miknown variables 
u3v,w3 and m 

S 

= 4x4 nondimensional  boundary condition matrices 

= 4x4 boundary condition  matrices 

= mass matrix 

7 



THEORY 

S h e l l  Geometry 

Consider  the  general   shell   of  revolution shown i n   f i g u r e  1. 
Located  within  this   shel l  i s  a reference  surface.  A l l  material   points 
o f   t he   she l l  can  be  located  using  the  orthogonal  coordinate  system s ,  
8 ,  6 ,  where s i s  the  meridional  distance  along  the  reference  surface 
measured  from  one  boundary, 0 i s  the  circumferential   angle measured 
from a datum meridian  plane, and 5 i s  t h e  normal distance from the  
reference  surface. The posit ive  direction  of  each  coordinate i s  indi-  
ca ted   in   f igure  1. For convenience, l e t   the   re fe rence   sur face  be 
positioned so t h a t  

where E i s  t h e   e l a s t i c  modulus and the  integrat ion i s  carried  out  over 
h ,   the   thickness   of   the   shel l .  Thus, when E i s  independent of 5 the  
reference  surface  coincides  with  the  middle  surface of the   she l l .   Fur ther ,  
le t   the   locat ion  of   the  reference  surface  be  descr ibed  by  the  dependent  
variable r ,  the normal distance from the  axis   of   the   shel l .   Accordingly,  
the   p r inc ipa l   rad i i   o f   curva ture   o f  the reference  surface  are  

where a pr ime  denotes   different ia t ion  with  respect   to  s .  Further,  note 
the  Codazzi i d e n t i t y  

1 ’  = r ’  ( R s l  - Re1)/’ 

and t h e   r e l a t i o n  

r ”  = - r /Rs  R e  

Strain-displacement  Relations 

For a shel l   of   revolut ion,   the   s t ra in-displacement   re la t ions 
derived by  Sanders  take  the  form 

c = U ’  + W/Rs + (@: + Q 2 ) / 2  
S 

= V ’ / r  + r 1  U/r + W/Re + ( m e  + @ ) / 2  
2 2  

€9 

1 } ( 5 )  

J 
and 
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reference 
surface 

I 
I 

Figure 1. S h e l l  Geometry and Coordinates 
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K = 5' 
S S 

J 
where E and E are   the   re fe rence   sur face   s t ra ins ,  x S ,  xe,  and 

K are  the  bending strains, U and V are   displacements   in   the  direct ions 

tangent to the  meridian and to t he   pa ra l l e l   c i r c l e   r e spec t ive ly ,  W i s  
the  displacement  normal to the   reference  surface,  and is ,  ie, and 8 
are   rotat ions  def ined  by 

S' "e, se 

se  

H = - W ' + U/Rs 

Z e = - W * / r  + V/Re 

S 

H = (v' + r ' V / r  - u'/r)/2 J 
In these  equations, and henceforth, a superscr ipt   dot   denotes   different ia-  
tion with  respect  to 0. The positive  direction  of  each  displacement and 
ro ta t ion   var iab le  is  ind ica t ed   i n  figure 2. 

Equations  of Motion 

Converting  Sanders'  equilibrium  equations to the  equations of 
motion f o r  a shel l   of   revolut ion  leads t o  

( rNs ) '  + N& - r 'N  0 + rQ S /Rs + ( R s l -  R;') Mie/2 = r ( smds) a%/aP 1 
N' 0 + ( r N  se ) ' + r 'Nse + rQ$Re + r[(Ri '  - Ri1)Mse3'/2 = r(JmdC)a2V/aT2 

- rqe + r ( geNe + Hs Nse )/Re - r [Z(Ns + Ne) ] /2 

( rQs ) ' + Q; - rNs/Rs - rN$Re = r ( smdS )a%& 

- r q  + (r@, Ns + rZ N ) + ( Z  N + Z N ) '  

1 

e se I I (8) 

s s e  9 0  

1 M i  + ( r M  ) '  + r Mse - rQe = 0 
se 

10 



s 

Figure 2. Positive  Directions for Displacements and Rotations 

8 § 

Figure 3. Positive  Directions for Forces,  Moments  and  Loads 
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when  the  effects of rotary  inertia  are  neglected. In equations (8) - 
(lo), m is  the  mass  density of the  shell  material, T is  time, q,, qe, 

and q are  the  meridional,  circumferential,  and  normal  components of the 
applied  pressure  load, Q and Q are  the  transverse  forces  per  unit 

length, Ns, Ne, and N are  the  membrane  forces  per  unit  length,  and 
Ms, Me, and M are  the  bending  and  'misting  moments  per  unit  length. 
Refer to figure 3 f o r  the  positive  directions of the  pressure  components, 
forces,  and  moments. 

S 9 

s e  

s e  

Constituitive  Relations 

The  constituitive  relations  used  in  Sanders'  nonlinear  theory 
are  the  same  as  those  proposed by Love  in  his  first  approximation  to 
the  linear, small strain  theory  of  thin  elastic  shells.  Noting  equation 
(l), these  can  be  given  in  the form 

where v is  Poisson's  ratio,  assumed  constant  through  the  thickness,  and 

B = J E  d 5 / (1 - w2) (=a) 

D = J C 2 E d C / ( 1 - v 2 )  ( 

N T = J c a ~ E d C / ( l - w )  (=dl 

In  equations (l2c) and  (l2d) , T is  the  local  temperature  change  and a 
is  the  coefficient of thermal  expansion. 
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Boundary Conditions 

In  Sanders '   nonlinear  theory,   the  conditions  to  prescribe on the  
edge  of a shell   of  revolution  are 

N or U SSe or  v 
S 

A 
Qs o r  W Ms o r  ms 

where ms, and Q are   the  effect ive  shear  and transverse  forces  per 

uni t   length  def ined by 
S 

Using  the  equilibrium  equation ( 9 )  to   e l imina te  Qs from equation  ( lga) 
l e a d s   t o  

E la s t i c   r e s t r a in t s  a t  the  edge of a s h e l l  can  be  provided f o r  by l i n e a r l y  
re lat ing  the  forces  or moment to  the  appropriate  displacements or 
rotation.  Consequently,  the  boundary  co.nditions may be  given i n   t h e  
matrix form 

NS 

NS 8 

QS 

@S 

h 

+iT 

U 

v 

W 

MS 

= , e  

where fi and r\ a re  4x4 matrices and 1 i s  a column matrix. The values  of 
the  elements  of  these  matrices  are  determined  by  the  conditions  pre- 
s c r i b e d   a t   t h e   s h e l l  boundary. 



METHOD OF SOLUTION 

Fourier  Expansions 

The  crux of the  method  used  here to solve  the  nonlinear  field 
equations  is  the  elimination of the  independent  variable €3 by  expand- 
ing  all  dependent  variables  into  sine or cosine  series in the  circum- 
ferential  direction.  Only  loading  and  initial  conditions  that  are 
symmetric  about a datum  meridian  plane will be considered. Thus, the 
variable i can be expressed in  the form* 

S 

m 

U n=O 

where cr is  a  reference  stress  level, E is  a  reference  elastic  modulus, 

and  the  nondimensional  series  coefficient cp (n) is  a  function  of  the 
independent  variables s and T. Similar  series  expansions  can  be  made 
for  the  remaining  dependent  variables. 

0 0 

S 

Modal  Uncoupling 

In order to eliminate  the  independent  variable €3 from  the  problem, 
and  convert  the  partial  differential  equations to sets of uncoupled 
partial  differential  equations,  the  nonlinear  terms  are  treated  as 
known  quantities or pseudo  loads.  Since  every  nonlinear  term  is  the 
product of two  Fourier  series,  each  product  can  be  reduced to a  single 
trigonometric  series  wherein  the  coefficient  is  itself  a  series. For 
example,  using  equation (17), G2 can  be  expressed  as 

S 

m m 

0 m=O  n=O 

Since 

cos  me  cos ne = 3 [cos  (m-n) 8 + cos  (m+n) 84 ( 1 9 )  

equation (18) can  be  given  in  the  form 

%eoretically,  the  complete  Fourier  series  including  both  the  sine  and 
cosine  expansions  should  be  used  because of the  possibility  of  "odd" 
displacements  occurring  under  "even"  loads,  i  .e.  a  bifurcation  phenomenon. 
This  aspect  is  not  considered  here. 
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U n-0 

where 

with 

0 f o r  n = 0 1 for i # n 

1 f o r  n > 0 2 for i = n 
T(= Y P =  

Similar  series  expressions  can be  derived for the  other  nonlinear  terms 
i n  equations ( 5 ) ,  ( 8 ) ,  (14), and (1%). They a re  

m 

m 

n=O 

n=O 
03 

@ N s = o h  1 T ( ~  s i n   n e  
0 0  

n=l  

n=l  



n=l 

n=l 

where  ho  is a reference  thickness. 

As a  result  of  the  trigonometric  series  expansions,  there  is  one 
set  of  governing  equations  for  each  value  of n considered;  when  only 
the  linear  terms  are  considered  the  sets  are  uncoupled.  The  presence 
of  the  nonlinear  terms  couples  the  sets  through  terms  like p(n) as 
given  by  equation  (20b).  However,  by  treating  the  nonlinear  terms  as 
known  quantities  and  grouping  them  with  the  load  terms,  the  sets  of 
equations  become  uncoupled. 

S 

Final  Equations 

Budiansky  and  Radk~wski'~'  have  shown  that  for  the  linear  shell 
problem  each  set of Sanders'  uncoupled  field  equations  can  be  reduced 
to four  second  order  differential  equations  provided M is  replaced 
by  the  equality  obtained  from  the  constituitive  relations  (lld)  and 

0 

(1le 1 

to prevent  derivatives  of W higher  than two from  appearing.  The 
same  procedure  is  used  here.  The  four  unknown  dependent  variables 
are  the  nondimensional  series  coefficients u'~), v'~), w'~), and  m (n) 
corresponding to U, V, W, and Ms respectively.  Three  of  the  final 
four  equations  are  derived  from  the  equations of motion (8) by  applying 
the  rotational  equilibrium  equations (9) and (lo), the  constituitive 
relations (11) and (21), and  the  strain-displacement  relations ( 5 ) ,  
( 6 ) ,  and (7). The  fourth  equation  is  derived  from  the  meridional 
bending  moment-curvature  relationship  given  by  (lld)  with n and n 
expressed in terms  of  the  displacements. 

S 

S €3 

A convenient  representation of these  four  equations  is  the  non- 
dimensional  matrix  form 

where 
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t  is  the  nondimensional  time T/To,  T is  a  reference  time,  and is the 
mass  matrix  given by 0 

The  nondimensional  scalar  mass ~1 is  defined by 

2 
cL= a 2 J m d S  

hoEoTo 

where  a  is  a  reference  length.  Hencefopth,  the  superscript n will  be 
dropped f o r  convenience. 

The E, F, G, and  e  in  equation (22) are  matrices  defined  in 
reference [l]. The  elements  of E, F, and G are  identical  with  those 
given  in  reference [7] for  the  linear  shell  analysis,  but  the  e  matrix 
as  defined in reference [l] contains  both  the  load  and  thermal  terms 
and  the  nonlinear  terms. 

The  boundary  conditions  on  z  are  obtained  by  applying  the  consti- 
tuitive  relations (11) and (21), and  the  strain-displacement  relations 
(5),  ( 6 ) ,  and (7) to equation (16). This  leads  to  the  matrix  equation 

1 

mZ + ( A + O J ) z = R - n f  

where h2 and A are  the  nondimensional  forms of E and x. Matrices H and J 
are  identical  with  those  given  in  reference .[7] for  the  linear  shell 
problem,  and  matrix f, as  defined  in  reference [l], contains  the  thermal 
and  nonlinear  terms.  In  this  formulation, h2, A, and R are  not  functions 
of n, and  hence,  the  same  set of boundary  conditions  applies f o r  each 
value  of  n  considered. An example of the  modifications  required to 
allow  different  values of A for  each  mode  is  given  in  reference [5]. 



Spatial  Finite  Difference  Formulation 

Let  the  shell  meridian  be  divided  into K - 1 equal  increments,  and 
denote  the  end  of  each  increment or station by the  index  i. Thus, 
i = 1 corresponds  to  the  initial  edge of the  shell  and i = K corres- 
ponds t o  the  final  edge.  One  fictitious  station  is  introduced  off  each 
end  of  the  shell  at i = 0 and i = K -f- 1. 

Let  the  first  and  second  derivatives  of z at  station i be 
approximated  by 

z" = bi+l - 22. + zi-l)/A2 i 1 

where A is  the  nondimensional  distance  between  stations.  Substituting 
equations  (24a)  and  (24b)  into  equation (22) leads  to 

where 

B.  = - 4E./A + 2 A Gi 
1 1 

Ci = 2Ei/A - Fi 

gi = 2 A ei 

1 

and i = 1, 2 . . . K to  insure  equilibrium  over  the  total  length of 
the  shell. 

At  the  boundaries  equation  (23)  must  be  satisfied. Thus, 
substituting  equation  (24a)  into  equation (23) leads  to 

at  the  initial  edge,  and 

at  the  final  edge. 



Timewise  Differencing  Scheme 

The  inertial  terms  that  appear  in  equations (25) can be approxi- 
mated by Houbolt’s  backward  differencing  scheme.  Accordingly, 

where j denotes  the  time  step  and 6%  is  the  nondimensional  time  inter- 
val. Thus,  substituting  equation (27) into  equation (25) yields 

and  i = 1, 2, . . . K. 
Solution by Elimination 

Eqautions (26) and (28) constitute  a  set  of  simultaneous  algebraic 
equations  in  the  unknowns z provided g 
Z are known. There  is  one  such  set  for  each  value  of n considered. 
The  equations  can  be  arranged  in  the  form  shown  in  figure 4. Since 
these  equations  are  tridiagonal  in  the  matrix  sense,  Potters’  form of 
Gaussian  elimination  can  be  used to solve  for  the z 
method,  recursion  relationships  of  the form i,j’ In this 

i,j  i,jy  ‘i,j-l’ iYj-2, and 
Z 

i,j-3 

are  developed. A forward  pass from the  initial  edge  to  the  final  edge 
computes  the x and  a  back  substitution  determines  the z The i,j’ i,j‘ 



Iu , 0 

Figure 4. l h t r ix  Equation for n = N 



matrices Pi, Pi, and $. are  independent of the  load  and  solution. 
Hence,  they  are  computed  only  once.  They  are 

- 
1 

The  initial  value  of x is 

and  the  value  of z at  station K + 1 is 

Poles 

The  equations (26a) and  (26b)  are  applicable  when  the  shell  has 
edges. If the  shell  has  a  pole, r=O, and  special  "boundary"  condi- 
tions  are  required  to  assure  finite  stresses  and  strairr;  at  the  pole. 
These  conditions  are  derived in reference [l]. 

SOLUTION  PROCEDURE 

As  a  consequence of the  selection of the  Houbolt  timewise 
differencing  scheme,  both  static  and  dynamic  analyses  can  be  carried 
out  using  essentially  the  same  set  of  equations  and  solution  procedure. 
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Static  Analysis 

For a  static  analysis, p=O, and  the  applied  load  is  increased 
monotonically. Thus, the  index j denotes  the  load  step. 

The  procedure  used to determine z for  the  monotonically  increasing 
load  is  illustrated in figure 5 and  described  below: 

1) The  matrices Pi,  Pi, and pi are  computed. - 

2) A solution  is  obtained  for  a  specified  increment (DEL@D) 
of  each  Fourier  coefficient  of  the  design  load. A l l  pseudo  loads 
are  taken  as  zero. 

3) The  new  solution  is  used  to  calculate  the  nonlinear  terms, 
and  a  new  value  of  the  load  vector  is  obtained  for  each  n.  Additional 
values  of  n  may  be  introduced by  the  nonlinear  terms. 

4) A solution  is  obtained  for  the  new  value  of  for  each n and 
is  compared  with  the  previous  solution. 

5) If the  difference  between two consecutive  solutions,  at any 
station  and  for  any n, is  greater  than  a  specified  percentage (EPS) 
of the  maximum  solution in that  mode  then  step #3 is  repeated.  How- 
ever,  if  the  number  of  iterations  has  exceeded  a  specified  maximum 
(ITRMAX) , the  total  load (&$AD) is  reduced  by  one  load  increment , 
the  increment (DEL$AD) is  reduced by a  factor  of 5, and  this  new 
increment  is  added to  the  load. If a  specified  number  of  load 
reductions (ICHMAX) have  been  made,  the  program  ends. 

6) If the two consecutive  solutions  have  converged,  another  load 
increment  is  added,  provided  the  number  of  load  steps  is  less  than  a 
specified  maximum (ISMAX). An estimate  of  the  solution  for  this  new 
load  is  made by linear  extrapolation  using  the two preceeding  converged 
solutions,  and  step #3 is  repeated. 

Since  the  method  of  solution  is  based  on  a  nonlinear  pseudo 
load  approach,  the  shell  reacts  equally,  in  a  linear  fashion,  to  any 

' change  in  either  the  applied  load  or  the  pseudo  load. !t!hus, failure 
of the  solution  to  converge  in  any  mode  can  be  attributed t o  two 
types of nonlinear  behavior.  Both  types  are  illustrated  in  figure 5. 
The  existance  of  a maximm or an  inflection  point  on  the  softening 
load-deflection  curve  A  represents  a  type of behavior  for  which  a 
solution  can  be  obtained  only  below  the  points  of  zero or nearly zero 
slope.  On  the  other  hand,  the  existence of a  stiffening  nonlinearity, 
as  illustrated by curve B of  figure 5, can  also  cause  a  convergence 
failure  when  ever  the  slope  becomes t o o  steep.  Thus,  in  general,  it 
is  necessary to examine  the  load-displacement  behavior  of  the  shell 
in  order to  determine  the  cause  of  the  convergence  failure. 
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Possible Paths 

Further Reducti 

Load 

w e d  Load  Step  Size 

~ - 

Displacement 

Figure 5. Typical  Load-Displacement  Curves 
from a  Static  Analysis 



Dynamic  Analysis 

The dynamic  analysis  proceeds  in  essentially  the  same  manner  as 
the  static  analysis.  The  only  differences  are  due to the  fact  that; 
(1) the  applied  load  is  not  monotonically  increased,  but  instead  is a 
function of the  time  step j; and ( 2 )  initial  conditions  on z and 
az/at  are  required to start  the  procedure. A brief  description  of  the 
procedure  used  to  obtain  the  response  of  the  shell  for a specified 
period of time  and  time  increment (DEL@D) is  given  below: 

1) The  matrices Pi, Pi, and P. are  computed. 

2 )  The  solutions  at j = 0, -1 and -2 are  computed  for  each n 

- n 

1 

from  the  specified  initial  conditions  using  the  expressions 

Z = initial  condition on z supplied by user i,O 

(az/at),,, = initial  condition  on  az/at  supplied  by  user 

Z i,-1  i,O = z  - 6t  (az/at)i,o 

Z = z  i,-2  i,O - 26t  (az/at)i,o 

for i = 0,1, ... K+1. An estimate of the  solution  at j=1 is  obtained 
for  each n from 

Z i,l = z i,O + 6t  (az/at)i,o 

for i = 0, 1, 2 ,  . . . K+1. 

3) This  new  solution  is  used  to  calculate  the  nonlinear  terms, 
and a new  value of is  obtained  for  each n using  the  estimated  non- 
linear  terms  and  applied  loads  at j and  the  solution  at j-1, j-2,  and 
j -3 .  

4) A solution  is  obtained  for  the  new  value  of  for  each n and 
is  compared  with  the  previous  solution  at j. 

5 )  If the  difference  between two consecutive  solutions,  at  any 
station  and  for  any  n,  is  greater  than a specified  percentage (EPS) of 
the  maximum  solution  in  that  mode  then  step #3 is  repeated.  However, 
if the  number  of  iterations  has  exceeded a specified  maximum (ITRAMAX) 
the  program  ends. 

6) If the two consecutive  solutions  are  sufficiently  close, an 
estimate of the  solution  at ji-1 is  obtained  by  quadratic  extrapolation 
from  the  solution  at j, j-1, and j -2 .  The preceeding  solutions  are up- 
dated,  and  step #3 is  repeated  for  the  new  time  step j=j+l, provided 
the  number  of  time  steps  is  less  than a specified  maximum (ISMAX). 
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Two commenfs a r e  i n  order  here. F i r s t ,  the  approximations  used 
to   obtain  the  solut ions a t  j = -1 and -2 are   not   the  ones  suggested  by 
Houbolt.  Houbolt’s  approximations  require a change i n   t h e  5 matrix 
a t  t he  f irst  time  step.  This i s  time consuming s ince it necessi ta tes  
the  recomputation of t he  Pi,   Pi ,  and P.  matrices, and does  not  appear 

to   be  worth t h e   e x t r a   e f f o r t .  Second, the time in t e rva l  i s  usual ly  
s o  small no i t e r a t i o n  i s  required  since  the  difference  between  the 
estimated  solution and computed solution is  generally  negligible.  
Howenr, when the   she l l  becomes dynamically  unstable,  the  solution 
may not  converge,  even  with i t e r a t i o n .  Thus, t he  maximum number of 
i t e r a t ions  allowed  should  be  small. 

- 
1 

COMPUTER PROGRAM 

Brief  Description 

The program descr ibed   in   th i s   repor t  - SATANS - S t a t i c  and Transient 
- Analysis,  Nonlinear,  Shells,- is  a modified  version oT the  pFogrgm 
described Fn reference  (1).  The revisions were made by personnel a t  the 
NASA Langley  Research  Center and by the  or iginal   author .  The  main 
difference between the  two versions i s  the  addi t ion  of   the  capabi l i ty  
f o r  dynamic analysis .  Another difference is  i n   t h e  manner i n  which core 
storage is  al located  for   the  solut ion  vector  z .  The solut ion  vector  i s  
now handled as a two dimensional  array  instead  of a three  dimensional 
array,   al lowing  the  user  the freedom  of prescribing  almost  any  combination 
of meridional and circumferential unknowns within  the  dimensions  of  the 
array.  In  the  modified program up t o  200  unknowns may be  specified so  
that   the   product   of   the   total  number of  meridional  stations and t h e   t o t a l  
number of Fourier  harmonics must be  less  than 201. However, t he  maximum 
number of  Fourier  harmonics  that can  be  considered i s  s t i l l  10. Any 
combination  of  harmonics may be  used. For  example, n = 5, 0 ,  22,  and 91 
is  allowed;  there i s  no r e s t r i c t i o n  on the  order  nor on the  number. 

A change was also made i n   t h e   t e s t   f o r  convergence. The o r ig ina l  
program required two consecutive  solutions  to  differ by less   than a 
specified  percentage of the   l a tes t   so lu t ion .   This   t es t  was made a t  
every  s ta t ion,   for   every mode, except when the  solut ion was less   than 

10 . Experience  with th i s   rou t ine  showed it t o   b e   t o o   r e s t r i c t i v e .  
Consequently, it was replaced  with  the  requirement  that   for  each 
harmonic the  difference between two consecutive  solutions a t  each 
s t a t i o n  must be less   than a specified  percentage of the maximum solut ion 
i n   t h a t  harmonic,  considering a l l  the  stations,   except when the   so lu t ion  

is  less   than 10 . This new tes t  f o r  convergence  appears to   provide 
converged,  accurate  solutions i n  fewer i te ra t ions   than   the   o r ig ina l  
scheme. 

-6 

-5  

The output  subroutine was a l so  modified in   o rder   to   p resent   the  
da t a   i n  more  compact form; the COMMON and DIMENSION statements were 
changed to  allow  the  compilation  of  the program i n  any order;  and 
several  bugs  were detected and eliminated. The operational  parameters 
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of the  program  and the  boundary  conditions  are s t i l l  read i n  on cards, 
bu t   the  geometry  and mass of the  shel l ,   the   inplane and bending 
s t i f fnesses ,   the   p ressure  and thermal  loads, and t h e   i n i t i a l  
conditions  are  introduced  through  user-prepared  subroutines. m e  
input and output  data may be i n  either  dimensional form or non- 
dimensional  form, and no spec ia l   t apes ,   d i scs ,   o r   rou t ines   a re  
required  for  execution. However, a tape i s  required i f  the  dynamic 
analysis i s  t o  be r e s t a r t ed .  All of these  changes have enlarged 
the  program t o   t h e   e x t e n t   t h a t  it now requires  a core  space of 
approximately 150,000 bytes  on an 360/67 d i g i t a l  computer  and 
can no longer  be  executed on a 32,000 word computer. The compilation 
time  using  the FORTRAN I V  Compiler,  Level H, i s  s l i g h t l y   l e s s  
than 2 minutes on the  NPS IBM 360/67. The s t a t i c   v e r s i o n   o f   t h i s  
program has  been  available from COSMIC as ~70-10098, LAR-10736. 

The computer  program  has  been  used t o  solve a number of s t a t i c  
and  dynamic problems for  both  axisymmetric and asymmetric  loads [5,6]. 
Two of  these problems are   p resented   here   to   i l lus t ra te   the   input  and 
output  features of t he  program. 

Nondimensionalization 

The input and output  data may be in  either  dimensional or  non- 
dimensional  form. The dimensional  parameters  are E a reference 

e l a s t i c  modulus, ao, a re ference   s t ress ,  a, a reference  length, and 

ho, a reference  thickness. The var iab les   a re  made nondimensional  as 

0' 

b 

d 

P 

follows : 

p = r/a 

5 = s/a 

dr y = - /./a ds 

o = a/Rs 

w8 = a/RB 

S 

= B/(Eoho) 

= D/(Eoho 
3 

= SmdC ( a2/hoEoT:) 

1 = e (n)  
T / ( aoho 
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Similar  expressions  hold  for t(n), m(n), etc , e 0 

Example of a Static  Analysis 

The  first  problem  is  the  static  analysis of a clamped,  shallow 
spherical  cap  of  constant  thickness  and  uniformly  loaded over one- 
half of the  shell from 8 = -go0 to 0 = 90 . This  problem  was  first 
considered by Famili  and  Archer [ 8 ] .  The  geometry  of  the  spherical 
cap  can  be  specified by  the  single  nondimensional  parameter A ,  where 

0 

H is  the  rise of the  shell  and h is  its  thickness.  The  classical 
buckling  pressure of a complete  sphere  is  denoted  by go, where 

For this  analysis, 

A = 6  

v = .3 

meridian  length = lo5 in. 

R = R = 1000 in. 

E = 27.3 x 10 lb/in. 2 

h = 1 in. 

B = 30.0 x 10 lb/in. 

D = 2.5 X 10 lb - in. 
q = -30 lb/in. 

s e  
6 

6 

6 

2 
4 2  e TT/2 

= -33.1 lb/in. 2 90 

The  reference  parameters  for  nondimensionalization  are  taken  as 
6 Eo = 30 x 10 lb/in. 

o = 1000 lb/in. 

2 

2 
0 
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a = 1000 i n .  

ho = 1 i n .  

Seven stations  over  the  length of the  meridian and four  modes are 
used for the   so lu t ion .  For the  purpose of i l lus t ra t ion ,   on ly   the  
first three  Fourier  harmonics of the  applied  load are used. Thus, 

q(O) = -15.0 lb / in .  2 

q(') = -19.1 lb / in .  2 

q(3) = 6.37 lb / in .  2 

The boundary  conditions  are 

U = V = W = @  = o  
S 

This  problem  took.33  minutes of  execution  time on the  Nps D M  360/67 
Computer using  the FORTRAN I V Y  Level H, Compiler with OPT=2. 

Example of  a Dynamic Analysis 

The second example i s  the dynamic analysis  of  a clamped truncated 
cone  subjected  to  an  impulsive  loading which i s  uniform  along  the 
meridian and va r i e s   i n  a cosine  distribution  over  one-half  of  the 
circumference.  This  problem is Sample  Problem No. 3 in   t he   s e r i e s   o f  
sample  problems  suggested  by  the Lockheed Missiles and Space Co.. The 
in i t i a l   cond i t ions   a r e  

w = 0. 0 ~ 8 S 2 r r  

dW/dT = -4440.8  cos 0 ( in . /sec)  -n/2 e 5 n/2 

dW/dT = 0. rr/2 5 0 S 3n/2 

The physical  parameters  are 

v = .286 

meridian  length = 15.004 in .  

r = 7.9499 i n .  

r = 10.23OO in .  

min 

max 

Rs - - 

R@ = r/cos w 



h = ,543 in .  

B = 2.0816 x 10 l b / in .  

D = 5.114 x 10 lb - i n .  

6 

4 

The time  step i s  

AT = 2  x 10 sec -6 

The reference  parameters  for  nondirnensionalization  are  taken  as 

E = 3.52 x 10 l b / in .  

0 = 1000 lb / in .  

a = 15.004  in. 

6 2 
0 

2 
0 

ho = .543 i n .  

To = 10.965 x sec 

Thirty-one  stations  over  the  length  of  the  meridian and four modes 
are  used for  the  solution. The f irst  four  Fourier  harmonics  of  the 
in i t ia l   condi t ions   a re  

dW(O)/dT = -4440.8/n in . /sec 

dW(')/dT = -4440.8/2  in./sec 

dW(2)/dT = -2 x 4440.8/(3~)   in . /sec 

dW(4)/dT = 2 x 4440.8/(15n)  in./sec 

The boundary  conditions  are 

This problem  took  approximately 8 minutes of execution  time for 
750 time  steps on the NPS IBM 360/67  computer using  the FORTRAN 
IV, Level H, Compiler with OPT=2. 



Card Columns 

1 2- 72 

2 1- 5 

2 6- 10 

" 

2 11-15 

2  16-20  

2  21-25 

2  26-30 

2 31-35 

2  36-40 

2 41-45 

2 46-50 

Input Data Carda 
S t a t i c  
Example 

10 

0 

1 

0 

1 

1 

1 

-1 

0 

7 

Dynamic 
Example 

108 

1 

0 

0 

2 

13 

2 

0 

0 

3 1  

In t e rp re t a t ion  

Problem descr ipt ion.  

The problem number. 

Set   to:  
1. = 0 fo r   e t a t i c   ana lys i s ;  
2. 2 1 for  dynamic analysis .  

S e t   t o :  
1. > 0 i f  m o d a l  da ta   a re   des i red  

f o r  each  harmonic; 
2 , s  0 i f  modal da ta   a re   no t  

desired.  

S e t   t o :  
1. = 0 i f  dimensional  form  of  out- 

2 .  2 1 i f  nondimensional  form  of 
pu t   da ta  i s  desired;  

output   data  is desired.  

The  summed so lu t ion  w i l l  be 
p r i n t e d   a t  NTHMlyl meridians, 
o s NTHMX s 6. 

The so lu t ion  w i l l  be   p r in t ed   a t  
meridional   s ta t ions 1, IFREQ + 1, 
2 *IFREQ + 1, ...., and t h e   f i n a l  
s t a t i o n .  

Every IPRINTth converged so lu t ion  
w i l l  be pr inted.  

S e t   t o :  
1 < 0 i f  the   she l l   has  a po le   a t  

the  first s ta t ion ;  
2. 5 0 i f  the  shell   does  not  have 

a p o l e   a t   t h e  first s t a t i o n .  

S e t   t o :  
1. < 0 i f  t h e   s h e l l  has a p o l e   a t  

2. 2 0 i f  t h e   s h e l l  does  not  have 
t h e   f i n a l   s t a t i o n ;  

a p o l e   a t   t h e   f i n a l   s t a t i o n .  

The number of   meridional   s ta t ions.  
The product  of KMAX and MculM ( the  
number of   Fourier   terms  in   the 
so lu t ion )  must be less than 201. 



2 51-55 I 5  

2 56-60  I5 

2 61-65  15 

2 66-70 15 

2 71-75 I5 

2 76-80 15 

3 1-12 E12.3 

3 13-24 E12.3 

"Ax 3 4 

mxM 4 4 

ISMAX 99 

750 

LCHMAX 2 

0 

ITRMAX 50 20 

0 

1 

IC 

Nu .3 .286 

SI@ 1000. 1000. 

Number of Fourier  terms  used to 
describe  the  initial  conditions, 
the  pressure  loads,  and the 
thermal  loads, "Ax < MpxM. 
Number of Fourier  terms in the 
solution, MAXM S 10 and (KMAX)* 
(") b 201. 

Static  analysis 
Maximum  number of load  intensities 
to  be  considered.  For  a  nonlinear 
analysis  this  number  should be 
large.  For  a  linear  analysis  set 
LSMAX = 1. 

Dynamic  analysis 
Maximum  number of time  increments 
to  be considered, LSMAX=T-/AT. 

Static  analysis 
M a x i m  number of load  increment 
reductions.  Recommend  value , 2-4. 
Dynamic analEi. 
LCHMAX = 0 

M a x i m  number  of  iterations  at 
any  load  intensity  or  time  step. 
Recommended  value, 10-30. For  a 
linear  analysis  set I"AX = 1. 

Static  analysis 
IC = 0 

Dynamic  analysis 
Set  to: 
1. 5 0 if shell  at  rest  at  t = 0, 

or if restarting  solution  at 
t>O, i.e. ITAPE = 2 or 3; 

at  t=O. 
2. > 0 for  non-zero  initial  conditions 

Poisson's  ratio, v. 

Reference  stress  level, u When 
the  data  is  to be input in dimen- 
siond form  set SIG@ = 1.. 

0' 



E12.3 

E12.3 

E12.3 

E12.3 

E12.3 

E12.3 

I 5  

ELAST 

TKN 

CHAR 

DFLOAD 

EPS 

ITAPE 

.3E8 

1. 

1000. 

0. 

.2 

* 01 

0 

-3 %’E7 

.543 

15.004 

10.965E-5 

1.823963-2 

.01 

Reference  modulus  of  elasticity, 
Eo. When  the  data is to be 

input in dimensional  form  set 
ELAST = 1.. 

Reference  thickness, . When  the 
data  is  to  be  input in dimensional 
form set TKN = 1.. 

hO 

Characteristic  shell  dimension, a. 
When  the data  is to be  input in 
dimensional  form  set CHAR = 1.. 

Static  analysis 
T E E @  = 0. 

Dynamic  analysis 
Reference  time T 

0’ 

Static  analysis 
The load increment. DELOAD remains 
unchanged  until  the  solution  fails 
to  converge in ITRM4X iterations. 
Then  it  is  automatically  reduced 
by a  factor  of 5. A maximum of 
LCHMCUC reductions w i l l  occur 
provided  the  nuntier of load 
intensities  considered  is  less 
than lSMAX. 
Dynamic  analysis 
The  nondimensional  time  increment 
6t. 

The  convergence  criterion. 
Recommended  value, .01. 

Static  analysis 
ITAPE = 0 

Dynamic analysis 
The  parameter  for  obtaining  the 
data  to  restart  the  solution  at 
t ’ 0: 
1. 

2. 

3. 

4. 

no read  or  write on tape, ITAPE 

write Z, Z$ , 22, and Z3 after 
final  time  step, ITAPE = 1; 
read Z,Z$,Z2, and Z3 before 
initial  time  step, ITAPE = 2; 
read Z,Z$,22, ana Z3 before 
initial  time  step,  and  write 
Z,Z@,Z2, and 23 after  final 
time  step, ITAPE = 3 .  

= 0 ;  



6 1-72 6312.3 0. 0. A list of NTHMAX circumfer- 
ential  coordinates 8, in 

3 .I4159 radians,  where  print-out 
of the  solution  is  desired. 
This  card  is  omitted if 
NTHMAX = 0. 

For  a  static  analysis,the  execution  for  each  case  terminates  and  the 
program  transfers to the  first  read  statement  when  either  the  number 
of load  intensities  considered  equals LSMAX or  the  number of iterations 
equals ITRMAX and  the  number  of  previous DELgAD reductions  equals 
LCHMCUC. 

For a  dynamic  analysis,  the  execution  terminates  when  either 
ISMAX tixe  increments  have  been  taken or when  the  solution  does  not 
converge  after  ITRMAX  iterations. 

Restart  option.  When 2, 2$, 22 and 23 have  been  put  on  tape  unit 
#8 after  the  final  time  step (ITAPE = l), the  response  computation  can 
be restarted  by  mounting  the  recorded  tape on unit #8, specifying 
ITAPE = 2 or 3, and  inputting  the  identical  data  except  for  IC  which 
must  be  zero.  The  following two cards  are  required  for  the Nps I B M  
360/67 : 

//C$ .m08~001 DD DSN=N~NLIN,UNIT=2400,V$I,=SER=NPSlOb, 
// EB=CRECFM=VS ,LRECL=3204,BLKSIZE=3208 ,DISP=(NEW,KEEP) ,LABEL=( ,SL) 
The  boundary  conditions  are  read in  on cards. If the  shell  does 

not  have  a  pole  at  the  first  station,  IBCINL 2 0, and  cards 7-15 
describe  the  boundary  conditions  at  the  first  station.  However, if 
the  shell  does  have  a  pole  at  the  first  station,  IBCINL < 0, and 
cards 7-15 are  omitted.  Cards 7-15 have  the  format 4E16.8 and  correspond 
to  the  boundary  conditions  as  follows: 
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If the shell  does  not  have  a  pole  at  the  final  station, DCFNL 5 0, 
and  cards 16-24 describe  the  boundary  conditions  at  the  final  station. 
The  format  and  correspondence  are  the  same  as  for  the  boundary 
conditions  at  the  first  station  given  above.  However, if the  shell 
does  have  a  pole  at  the  final  station, IBCFNL < 0, and  cards 16-24 
are  omitted.  Note  that  the  boundary  conditions  are  on  the  total 
variables  and  not  on  the  individual  modes.  Thus,  it  is  not  possible 
to have  different  boundary  conditions  for  each  mode  without  modifying 
the  program. An example  of  the  modifications  required  to  change A 
is  given in reference 5. Furthermore,  note  that  the  boundary  conditions 
are  input in dimensional  form. 

User-Repared Subroutines 

The  geometry of the  shell,  the  inplane  and  bending  stiffnesses 
of the  shell,  the  applied  pressure  and  thermal  loads,  and  the  initial 
conditions  are  introduced to the  program  through  the  use  of  the  five 
subroutines GEgM, BDB (K, B y  DB, D, DD), PL$AD(K), T L W ( K )  and INITL. 
This  section  describes  each  of  these  subroutines. 

1. * 
The  nondimensional  quantities A, p ,  y ,  we, u) durs/d5,  and p are 

S Y  

defined in GE$M as  a  function of the  meridional  station  number K. 
The  correspondence  between  the  nondimensional  variables  and  the 
F$RTRAN variables  is  as  follows: 

DEL = A = (meridian  length)/[a(KMAX - l)] 

R ( K )  = ( P I ,  = (r/a)K 

K = 1,2, ... KMAX 
@'fT(K) = ("e>K (a/Re)K 
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The  statements for the static  example  are 

DEL= (105. /6. ) / ~ O O O ,  

D$ 4 K3,KMAX 

RK = K 

THET = (RK-1. )*Dm 
R(K)  = SIN(THET) 

W ( K )  = q w T H E T ) / R ( K )  
$MT(K)=l. 
$MXT(K)=l. 

4 DE@MK(K) = 0.  

GAM(1) = 0.  

$MT(1)=1. 

@m (1)=1. 

DE@MX(~) = 0.  

R ( 1 )  = 0. 

The  statements  for  the  dynamic  example  are 

AICX=KMAX-l 

DEL=1. /AM 
THET=ARSIN(2.2801/cH.AR) 
D$ 11 K=l,KMAX 

AK=K 

R(K)=(7.9499+(AK-1.)*(2.2801)/AKK)/CHAR 
G A M ( K ) = ( 2 . 2 8 0 1 / C W ) / R ( K )  

J ~ K I ( K ) = O .  

DE$MX ( K )  =O . 
6 W K ) = q J S  (THET)/R(K) 
McssS(K)=l.  

11 cgNTIJ!luE 

2 .  BDB ( K ,   B y  DB,  D, DD) 

The nondimensional  stiffness  quantities b y  db/d<, d, and  dd/ds 
are  defined  in BDB for each  meridional  station.  The  correspondence 
between the  stiffness  quantities  at the K t h  station  and the F$RTRAN 
variables is as follows: 

35 



B =  

DB = 

D =  

DD = 

where 

db F= (”> dB (-) a (Z)K ds K  Eoho 

dd d D a  
d 5 K  ds K E  (”> = ( - 4  (7) 

0 0  

B = sEdc/(l-v ) 

D = sc2Edc/(1-v ) 

2 

2 

The  statements for the  static  example  are 

B=27.3EtO6/(3O.E+06*1.*(1.-.09)) 
D=B/12. 
DB=O . 
DD=O . 

The  statements for the  dynamic  example  are 

B=l .089082 
D=.O9075683 
DB=O . 
DD=O . 

3. ?LW.(K) 

The  nondimensional  Fourier  coefficients of the  meridional, 
circumferential  and  normal  components  of  the  pressure  load (n> 

Y Ps Y 

Pf3 (n)y and  p(n)  respectively,  are  defined  in PLfiAD for each  meridional 
station  as  a  f’unction of the  Fourier  index. In addition,  the  array 
of Fourier  integer  numbers n is  defined  here.  The  relationship 
between  these  quantities  at  the  Kth  station  and  FfiRTRAN  variables  is 
as  follows : 

NN(M) = n 



i 

Note  that  these  are  stored  as  functions 

M = 1, 2, ... "Ax 

of M only.  

The  statements  for  the  static  example  are 

NN(l)=O 

NN(2)=1 

NN(3)=3 
2% (1)=-15. 
m(2)=-19.1 

PR(3)=6.37 

No  statements  are  required  for  the  dynamic  example.  The  array 
of mode  numbers  is  included  in  the  subroutine INITL. 

The  nondimensional  Fourier  coefficients  of  the  thermal  loads 
(n) (n) and - a 

tT ' "T ' (tT d5 
for  each  meridional  station  as  a  f'unction  of  the  Fourier  index.  The 
F$RTRAN variables  are  defined  as  follows: 

(Y(~)) are  defined in TL$AD(K) 

EMT(M) = = (kT(n))K (a/o 0 0  h 3 ,  

Note  that  these  are  stored  as  functions  of M only. If only  thermal 
loads are.applied the  array  of  Fourier  interger  numbers  can  be 
introduced  in T L @ D ( K )  instead  of PL@(K). 

This  subroutine  introduces  the  initial  conditions  of  the  non- 
dimensional  solution  vector z f o r  all  the  stations,  including  the 
ficticious  stations  off  the  ends  of  the  shell,  and all the  modes. 
?!he FgRTRAN  variables are defined as follows: 
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Z(I,L) = (Z ( 4  )K = 

U(n) (Eo/auo) 

d n )  (Eo/aoo) 

d n )  (Eo/auo) 

MLn)(a/o 0 0 '  h 3' 1 I K 
I = 1,2,3,4 

L = 1,2, ... 
(KMAx+2)*( "Ax) 

The index L runs from 1 t o  KMAX+2 fo r  NN(1), and from 1-!-KMAX+2 t o  
2(KMAX-!-2) f o r  NN(2) , e t c .  The f irst  element f o r  each  value  of n 
corresponds t o   t h e   i n i t i a l   f i c t i c i o u s   s t a t i o n ,   t h e   n e x t  element 
corresponds t o   t h e  f irst  s t a t i o n  on t h e   s h e l l ,   e t c .  

The s ta tements   for   the dynamic  example a r e  

NN(l)=O 
NN(2)=1 

NN(3)=2 
NN(4)=4 

PI=3.14159 
D$ 2 M=l," 
IF(M.EQ.~)  VEL=-444.O8/PI 

IF(M.EQ.2)  VEL=-444.08/2. 

IE'(M.EQ.3) VEL=-444.08+2./(3.KI?I) 

IF(M.EQ.4) Vn;=444.08+2./(15.*.PI) 

Dfl 2 K=2 ,KL 
I=K+~+(M-~)*XMAICZ 

2 ~ ~ T ( 3 , I ) = ~ * E L A S T ~ ~ / ( C ~ ~ I G ~ ) * l O .  

i n  which KL = KMAX-1 and KMAX2 = KMAX+2. 
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Output  Format 

d The output  from  the program cons is t s  of t h e  boundary  conditions n, x, and R at  each  end of the  shell;  the  input  parameters,  such as 
t h e  number of   s ta t ions ,   the  number of modes, e tc . ;  and t h e   c i r -  
cumferential  coordinates  where a sumed  solution is desired.  The 
remainder of t he  output can  appear in   e i ther   dimensional  or  non- 
dimensional form. The correspondence  between  the  printed F$RTRAN 
variables  and the  dimensional and  nondimensional  dependent  variables 
i s  given  below.  For t h e   s h e l l  geometry, the  following  are  printed 
at each s t a t ion :  

RADIUS - 

$MEGA s 

@EGA THETA - 

I / R ~  or u) 

l / R e  or u) 

S 

e 
d du)S - (1/~~) o r  - ds dS 

For the  inplane and  bending s t i f fnesses ,   the   fol lowing  are   pr inted 
at each s t a t ion :  

B STIFFNESS - B or  b 

D STIFFNESS - D or  d 

B FRIME dB db 
ds Or 
" 

For the  pressure and thermal  loads,  the  following  are  printed 
a t  each s t a t i o n   f o r  each  value  of  n for t he   s t a t i c   ana lys i s :  

N - Fourier  index n 

PR - 9  or  p (n) 
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each 

Not e 

The following in i t ia l  conditions are pr in ted  a t  each s t a t i o n   f o r  
value  of n f o r  non zero initial condi t ions   in  a dynamic analysis:  

no t   t he   f i c t i c ious   s t a t ion .  

Every IPRINTLh solut ion i s  printed  with  the  corresponding  load 
fac tor  and the  number of   i t e ra t ions .  The def ini t ions  of   the  
printed  quantit ies  preceeding  the  solution  are:  

L@AD STEP NLJMBl3R - t he  number of  load  intensit ies  considered. 

TIME STEP NUMBER - t he  number of  time  steps  taken. 

L ~ A D  FACT~R - the   proport ion  of   the  loads  given  in  €X@, 
TLgAD and R current ly  on the   she l l .  

TIME - both  nondimensional and dimensional  time  are 
given. 

ITTRATI~NS - t he  number of   i terat ions  required f o r  convergence. 

The correspondence  between the  printed  terms and the  dimensional 
and nondimensional  forces, moments, displacements and ro ta t ions  i s  
as  follows : 

N S  - Ns o r  ts 
N THETA - Ne or 

tg  
N STHETA - Nse or 

ts e 
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Q S  - Qs 01- fs  
M S  - Ms or m 

S 

M THETA - Me or me 
M SWTA - Mse or m 

U - U  o r u  

v - V  o r v  

W - W  o r w  

s e  

PHIS - ms or 'ps 

PHL THETA - Ge o r  'pe 
PHI - @  o r c p  

Sample Solutions 

The pr inted  input   data  and so lu t ion   for   the   s ta t ic   ana lys i s  
example i s  given i n  figure 6 for the   load  factor  .744. The load- 
displacement  plot i s  given i n   f i g u r e  7 for the  displacement a t  the  
pole   (s ta t ion 1) and s t a t i o n  3 f o r  9 = 0'. The pr inted  input   data  
and solut ion for the  dynamic analysis  example i s  given i n   f i g u r e  8 
for T = 500 psec. The t ime  history of the  normal  displacement a t  

= 6.5 in .  and 8 = oo i s  given i n   f i g u r e  9. 
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- -PROBLEM NUYBEQ 10" 

S 4 Y P L E   P R I ! B L E Y  10 - U N S Y M M E T S I C A L L Y   L O A U E D   S P H E R I C A L  CAP, T E S T  CASE. 

- - INPUT  DATA  RECORD" 

5 NUMB 
NUMn 
I NCR 

MAX I 
MAX I 

CONV 
MAX I 

'1.0 b . 0 0.0 0.0 ) U  0.0 
u.0 

1 N S  
0.G 

( :.100E U l  0.0 
N ST + ( ..O 0.130E 01 0.0 

0.C n. D a s  0.0 1 v = 0.0 
( c.0 

0.3 U.l!lOE 011 P H I  S f cI.9 
0. (1 @.@ 0.1OOF 01  0.0 J W  

0.0 0.0 1 Y S  
0.0 
0.0 

C I R C l l Y F E R t N T l A L   C O O R D I N A T E S  FOR P R I N T  R E C O R D ,  I N  HAQIANS,   ARE:  

r. . c , 

THE  UATP IS I N  D I M E N S I O N A L  FORM 

Figure 6. Input Data  and Solution for  the Static  Analysis Example 



W 
c 

S T A T   I O N   R A D I U S  GAMMA 

0. 0 c . 0 
0 . 1 7 5 J E  ? 2  
0 . 3 4 9 9 F  32 

( . 5 7 1 4 F - q 1  
C " 2 R 5 6 E - 0 1  

C.6994E 72  
0. 5 2 4 9 F  7 2  

5 .  1426E- '>1  
D. 1 9 O 3 F - 0 1  

U. 1 C 4 H E  ;'3 
G.0739E n2 U . l 1 4 C f - ' ! l  

G. 9 4 8 q E - 0 2  

S T A T I O N  El S T I F F N E S S  0 S T I F F N E S S  

OYEGA S 

B P R I M E  

PRESSIJRE ANI) T E M P E R 4 T U R E   C O E F F I C I E N T S   F O R   N =  0 FOLLOW 

S T A T  I ON  PR PX P T   T T  MT 

1 - J . l 5 t i b E  (12 

-u. 1 5 n o ~  02 

2 - I J .  1SOOE @2 
I, . i"1 
'I. I., 

O.C 0. c 0.0 

3 
0.0 

-0 .1500E 0 2  0.0 
0.0 0.0 

4 
0.0 0.0 0.0 . i) 

5 -0.15UOE  C2 
U.0  0.0 0.0 

6 
J. fa 

-ti. 1 5 W E  02 
V.@ 

9.C 
il.O 0.0 

7 -C. 1500E 02 0.0 0.0 
0.0 0. G 

0.2 
0.0 
0.0 

PRESSl lRE  AN0   TEMPFP4TURE  COEFFIC IENTS  FOR N= 1 FOLLOW 

S T A T I O N  PR PX P T   T T  MT 

1 
2 

-C. l91GE 02 
-C. 1 9 1 0 E  02 

c .C 6.0 0.0 0.0 
'3 .  L 0 . 0 

3 -0 .1919E 02 
0.0 c.0 

s.c 
4 -c. 1 9 1 ~ ~  n2 J.T. 

0.0 0.0 0.0 

5 
0.C 

-\!.1913E 02 
0.0 

.3 . ? 
0.0 

6 -L. 1 9 1 0 E  02 
0.9 0.0 
0.0 

0.0 

7 -C. 1 9 1 9 E  02  i'.L b.0 C.3 0.0 
@. 0 0.0 . .4' 

S T A T I O N  

PRESSURE  AN0  TEMPERATURE  COEFFIC IENTS  FOR  N=  3 FOLLOY 

PR Pv: P T   T T  MT 

0.0 
c.n L'. @ 
0.9 
0.0 
0.c 
0 . 0 

OMEGA T H E T A  OEOWEGA S 

0.1003E-02 0.0 
0.1000E-C2 0.0 
O.1OOOE-02 0.0 

0.1300E-C2 0.0 
0.1303E-CZ 0.0 
G.100uE-02 0.0 

0 . 1 0 0 ~ ~ - 0 2  0.0 

D P a I M E  

0 TT 

0.3 
0.0 

0.0 
0.0 
0.0 
9.0 
0.0 

OTT 

0.0 
9.0 
0.0 
3.0 

9.0 
0.0 

a. 3 

OTT 

0 WT 

DMT 

OMT 

Figure 6. Continued 



THE LOAD STEP NUMBER I S  9 THE LOA0 FACTOR I S  C.7440E 00 THE SOLUTION CONVERGE0 I N  10 ITERATIONS 

THE  SUMMFD FORCES, MOMENTS, DISPLACEMENTS AND ROTATIONS FOLLOW  FOR THETA = O.G 

STATION N S  N THETA N STHETA Q S  M S  H THETA M STHETA 

1 
2 
3 
4 
5 
6 
7 

- II. 720DF  04 
-0.1384F  05 
-9.1517E 0 5  
-0.1369E 0 5  
-0.9U44E 0 4  
-0.5843F 0 4  
-0.1257E 0 4  

-0.4576E 114 
-C. l361F  p5 
-J.2(.11E 0 5  
- n . 1 9 9 5 ~   0 5  
-0.1389E  05 
-C.5R93E 04 
-?.3771E 0 3  

v. 0 
0.0 
0.P 
0.0 
0.0 

0. r 

n. o 

-U.l!13FIE 0 3  
-0.6181E C2 
-0.3293E  02 

0.5189E  C2 
C.1127E 0 3  

0.2868E 03 
0.1765E  03 

0.2211E 0 3  
-0.1626E 0 4  
-u.2913E 04 
-@.2613E 34 
-0.1166E 0 4  

0.4425E 0 4  
9.9917E 0 3  

0.13G3F 03 
-0.1565E 0 4  
-0.1933E 04 
-0.182EE 0 4  
-C. l205E  04 
-0.2303E 0 3  

0.1328E 04 

STATION U V W PHI S PHI  THETA PHI 

1 -S.2584E-01 0.0 
2 -1?.2947~-r11 0 . 0 -0.7308E 00 

-0.28tlOF. do C.2900E-01 0.0 0.0 
0.2382E-01 

3 - n . m 5 4 ~ - 0 1  0.0 -0.1018E 01  0.7398E-02 
0.0 0.0 

4 - 0 . 6 6 1 5 ~ 2  0.0 -2.99L4E 00 
@.@ 

-0.9517E-02 
O.@ 

5  0.2747E-C2 -(J.6849E 00 - 0 . 2 n 5 5 ~ - 0 1  
0.0 0.0 

6  J.3h77E-62 p:c; -0.2711E 00 
0.0 

-0.1957E-01 
@.@ 

7  -').59t0€-(;8 (..0 -C. 3517E-06 0 .  cn 0.0 
0.C 

-0.5058F-08 
0.0 

STAT ION 

1 

3 
2 

4 
5 
6 
7 

STATION 

1 
2 
3 

6 
7 

5 

N S  N THETA 

-G. 5R88E 0 4  

-0.7364E (34 
-ii.6410E 0 4  

-(J.6127€ C.4 
-\J.5578€ 04 
-?. 4 5 0 4 F  ('4 
-0.3185E C4 

-d.5@88E  04 
-0.63  53E 0 4  
-0.6Y14E 04 

-C.4hblE 0 4  
- ( J .  6 3 9 3 E   c 4  

- 0 . 2 5 0 5 ~   0 4  
- 0 . 9 5 5 4 ~   0 3  

Il  V 

MODAL OUTPUT 

N STHETA 

0.0 
( I .  0 
0.0 
9.d 
i). 0 
0. 0 
0.0 

H 

0.0 
0.3 
0.0 

0.0 
0.0 
0.0 
0.0 

FOR  MODE N = 0 FOLLOWS 

9 s  M S  M THETA M STHETA 

0.@ 
-0.1433F  02 

0.1757E 0 3  0.1757E  03 
0.1757E 0 3  0.1222E 03 

0.0 

-0.27  19E 02  -0.4328E C 3  
0.0 

0.1607E 01 
-d. 1567E  03  

-0.4999E 03 -0.3003F 03 
0.0 

3.2172E C2 - 0 . 2 4 3 6 ~   0 3  -0.2577E  03 
0.0 

0.4516F C2 C.2534F 03  -0.61J2E  02 
0.0 
0.0 

0 . ~ 6 8 2 ~   0 2  0.1211E 0 4  0.3634F 0 3  0.0 

PHI S PHI THETA P H I  

0.5343E-C3 
0. d 

-G.4142F-P3 

-0.5689E-02 
-:).3473E-02 

-C.5284E-02 
0.181 7 E - C B  

0.0 

0 .(' 
u. f? 

0. n 
0. I! 

0.0 
0. C 

Figure 6 .  Continued 



W D A L  OlJTPlJT FUH COLlk N = 
t4 STHETA a s  

1 FOLLOWS 

M S  STAT 1 ON N S  i.l THETA M THETA M STHETA 

-0.748 IF < 4  
-7.1222E ' . 5  
-?.1234E ..'5 
-,.36,07E : 4 

>.196ZE i 3 

3. il 

-2.A735E " 4  

--. lE39E l;4 
-J.4592€  04 
-f i .556ht 'J4 
-0.554YE 114 

-3.33P7E  04 
-C.47ClF: 0 4  

L. 1 
-0.18 M E  0 4  
G. 3 

-0.2L80E i ? 4  

-C.@401E 03 
-C. 1665E  04 

0.4724E 0 3  
0.3!119~ n 4  

-0.1264E 0 4  
-0.1399E 0 4  

-0.864'lE 03  
-0.1244E 04 

-0.2416E 0 3  
0.9059E 03 

(1.0 0.0 
D.5525E 03 
0.5952E 03 
0.5720E 03 
0.4709f 03 

-0.2821E 00 
0.2954E 03 

STAT 1 O Y  U V w P H I  S PHI   THETA  PHI  

2 
1 .  

3 
-d.2584€-01 
-0.2584E-01 
-0.1848E-C1 - 1. R6RSE-52 
-11.1416E-02 

,3.9771E-C3 
-0.5588E-CR 

0.290UE-Cl 

0.6035E-02 
i).1795E-01 

-0.571RF-Gz 
-0.1252E- i l  
-0.1266F-01 
-0.8180E-OR 

-0.290l~E-01 
-0.2347E-C1 
-0.1795E-01 
-U.1185€-01 
-0.6323E-02 
-0.2110E-02 
-0.3324E-OR 

0.u 
0.8296E-04 

-0.1298E-04 

-0.1175E-03 
-0.7COZE-04 

-0.1485E-03 
-0.1613E-03 

4 

6 
5 

7 

MODAL llUTPUT FOR M9DE N = 3 FOLLOWS 

N THFTA Y STHETA Q S  M S  S T A T I O N  N S  M THETA H STHETA 

1 0.u 
9.8365E  03  -9.6996E :;? -<.7687E 03 n.8236E b l   - 0 . 3 1 3 2 ~  02 

0.0 0.0 
'3.1211E :I4 -0.457RE c 3  -C.R273E 0 3  

0.2614E 03 
0.4883F 3 1  

0.1267E 03 
4  0.1499E C4 0 . 2 3 5 4 ~  c q  -9.3732E 9 3  

C.1137E 03 0.3RR5E 03 0.6502E 02 
0.3771E 0 3  -0.1111E 02 

6 iJ. 1137E  04 
9.1172F C3 

3.5551E C3 
-0.6189F C 1  U.2923E 0 3  0.3ZlQE 0 3  -0.8573E 02 

7 '1.1267E 13 
0.4111F 0 3  

0.3796E 1:2 
-0.2778E 0 2  

i1.396lE C.3 -U.6937E 02 
0.1456E C3 0.1705E 0 3  -0.1129E 0 3  

-0.5344E G 3  -0.1603E 03 0.3286E-01 

: 
5  0.1669E C4 ? .7 lWE r 3 

0.0 c. !I 0.0 G.0 

0 . 1 4 6 1 ~  c 1  n . 2 1 9 2 ~   0 3  

S T A T I O N   U  V H P H I  S P H I   T H E T A   P H I  

2 
1 

3 
4 
5 

-0.3575E-04 
G. C I  

C' .  1963E-l!3 
0.4647E-03 --?. 3q25E-C4 
('. 31  53E-03 

-J. 124ZE-QQ 

0.0 
'Jm6604E-t.4 

4 . 7 2 3 1 E - i  4 
-0.549RE-i3 
-1J.91 75E-k.3 
-0.6RURE-4,3 

21   11E- i  P 

0.0 
0.9394E-03 
0.2206E-02 
".2651E-02 
0.2262E-02 

9 . 1 8 2 2 F 4 8  
L.1123E-Ct 

-0.2211E-05 
-0.1396E-05 

-0.1653E-35 
-0.4023E-05 

G. 8553E-05 
0.1886E-04 

0.0 

8 



1 
2 z 
5 
6 
1 

N S  

U 
V 

PHI  



0.8 

0.6 

q/q0 
0.4 

0.2 

Figure 7. Load-Displacement Curves for 
Static Analysis Example Problem 
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--PROBLEM  NUMBER 108" 

LMSC  TEST  CASE,   IMPULSIVELY  LOAOEO  CONE 

- - INPUT  DATA  RECORD--  

THE  BOUNDARY  CONDIT IONS  ARE:  

( 0.c 0.0 0.0 
( 0.0 0.0 0.0 0.0 1 N ST + ( 0.0 

0.0 1 N S  ( rJ.1ooE 01 c . 0  0.0 0.0 I U  0.0 
G.1COE 01 0.0 

( 0.0 0.0 0.0 0.0 I a s  0.0 1 V = '3.0 
( 0.0 0.0 c.0 0 . 1 0 0 E   0 1 1   P H I  S 

( c.0 
( 0.0 

0 .L' 0 . 1 0 0 E  0 1  0.0 1 w  
0.0 0.0 0.0 I M S  

0.0 
0.0 

( 0.0 
( 0.0 0.0 

0.0 0.0 0.0 I N S  ( G.100E 01 0.0 
0.0 0.0 I N ST + ( 0.0 

0.0 0.0 I U  0.0 
0.100E 01 0.0 

( 0.0 0.0  0.0 
0 .o I v = 0.0 

( 0.0 
0.0 I ( 0.0 I W  0.0 

( 0.0 
0.0 
0 .C  

O.1COE 01 0.0 
0.0 0.0 I M S  0.0 0.0 0.0 0 . 1 0 0 E  01) 8H: S 

0 2  
00 
07 
C4 

-0 3 
00 

C I R C U M F E R E N T I A L   C O C R O I N A T E S   F O R   P R I N T   R E C O R D ,   I N   R A D I A N S ,   A R E :  

0.0 0 . 3 1 4 1 5 9 E  01 

THE  DATA IS I N   D I M E N S I O N A L   F O R M  

Figure 8. Input Data and Solution f o r  t he  Dynamic Analysis Example 



STATION 

10 
9 

11 
1 2  
1 3  
1 4  
1 5  
1 6  
17 
1 8  
1 9  
20 
2 1  
2 2  

2 4  
23  

2 6  
25 

27  
28 
29  
30 
3 1  

RAD I US GAMH4 

STAT ION 8 STIFFNESS 

1 
2 
3 
4 

6 
5 

7 
e 

1c 
9 

11 
12 
1 3  
1 4  
15  
1 6  
17 
1 8  

2 Q 
19 

2 1  
2 2  
23 
2 4  
2 5  
2 6  
27 

29 
28  

3r. 
3 1  

0.2G8163E  07 
0.208163E  07 
0.208163E  07 

0.2C8163E  07 
0.208 163E  07 

0.2081  63E 07 

r ia2'?8163E C7 
3.208163E  07 

0.268 163E  07 
0.298163E  57 
(i.208163E  07 
0.238163E  07 
0.2C8163E  07 
0.2(.0163E  07 
0.2L,8163E 0 7  
0.2@8163E  07 
0.2b8 163E  07 
0 .2V163E  07  
0.208163E C7 
0.298 163E G7 
3.258163E  07 
0.208163E  07 
5.208163E 07 
0.298163E  07 
0.2G8163E C7 
0.208i63E C7 
O.Z.GBlb3E b 7  

0.2c.8163E 07 
0.208163E  n7 

0.268163E  07 
0.2C8163E 0 7  

Figure 8 

OMEGA S OMEGA THETA DEOMEGA S MASS 

C.S 
0.3 
0 .o 
G . 0  
0.0 
5 .3  
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0 .o 
0.9 
0.0 

0.0 
0.0 
0.0 
0.0 

0.3 
0.0 
0.0 
0.0 
0.0 

0 .o G.0 

0.0 
0.0 
0.0 

0 STIFFNESS 8 PRIME  D  PRIME 

0.511471E  05 
0.511471E  05 
0.511471E 0 5  

0.511471E  05 
0.511471E 0 5  

0.511471E  05 
0.511471E  C5 
0.511471E C5 
0.511471E  b5 
0.511471E  85 
0.51 1471  E a 5  
@.511471E C5 
C. 511471E G5 
0.511471E ?5 

0.511471E C5 
0.511471E  ~5 

n. 5 1 1 4 7 1 ~   3 5  

0.511471E  d5 
0.511471E  u5 

0.51  1471E  05 
U.511471E  35 
0.511471E  05 
0.511471E G5 
0.511471E  05 
0.511471E C5 
G.511471E 0 5  
U. 511471 E C5 
0.511471E C5 
Y. 511471E  05 
0.511471E  35 
0.511471E 0 5  

Continued 

0.0 
0.0 
0.  c 

0.6 
0.U 

0.0 
0. c! 
0.0 
0. L 

0. C 
0. C 

0.c n. G 
c1.n D. 0 
0.  c 
0.0 
0.5 
O.C 
0.0 
0.0 
0. r; 

0.0 
0.6 
0. c 
0. c, 
c. 0 
d.@ 
0. I4 
?.U 
c. 0 



ul 
0 

T H E   I N I T I A L   C O N D I T I O N S  FOR N =  0 FOLLOH 

STAT I O N  U 

1 
2 

0.9 

3 
0.c 

4 
0.0 
0.0 

5 
6 

0.0 

7 
0.0 
0.0 

9 
0.c; 
0.0 

10 0.0 
11  
12 

0.0 
0.0 

1 3  
1 4  

0.C 
0.5 

15 0.0 
16 0.0 
17 
18 

0 .c  
0.c 

19  0.9 
20 0.G 
21 0.0 
22 
23 

0.0 

2 4  
0.1 
v .c 

25 
26 

0.0 

27 
0.c 
0.c. 

29 0.0 
30 0.0 
3 1  0.0 

a 

28 0.c 

S T A T I O N  U DOT 

2 
1 

3 
4 
5 
6 
7 

9 

11 
10 

12 
1 3  
1 4  
15 
16 
17 
18 
19  
20 
21 
22 
23 

25 
24 

27 
26 

28 
29 
30 
31  

a 

V W M S  

V DOT W DOT 

-0.141355E  G4 
-0.141355E  04 -l!. 141355E G4 
-0.141355E  G4 
-0.141355E  04 
-0.141355E 0 4  
-0.141355E 0 4  
-0.141355E 0 4  

-C. 141355E  04 
-0.141355E  C4 

- t . l 4 1 3 5 5 E   0 4  
-0.141355E 5 4  

-0.141355E 0 4  
-0.141355E 0 4  

-0.141355E  04 
-0.141355E 0 4  

-0.141355E 0 4  
-0.141355E  04 
-0.141355E  C4 
-0.141355E  04 
-0.141355E  04 
-0.141355E 0 4  
-0.141355E  C4 
-0.141355E 0 4  
-0.141355E C.4 
-0.141355E 0 4  
-0.141355E 0 4  
-0.141355E 0 4  
-0.141355E  04 

C . 0  

0.0 

H S DOT 

Figure 8 .  Continued 



THE I N I T I A L  C O N D I T I O N S  FOR N= 1 FOLLOW 

STAT ION U V 

2 
1 

3 
4 
5 
7 
6 

8 

1c 
9 

11 
12 
13 
14 
15 
17 
16 
18 

20 
19 

21 
23 
22 
24 
2 5  
26 
27 

29 
28 

31 
30 

0.L 
0.0 
0 . 0 
0.0 
0.c 
0.0 
0.P 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 c. c 
0 . 0  
U. 0 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
G.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
C.C 
0.0 

a.O 

STATION U DOT V DOT 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12 
13 
15 
14 

17 
16 
18 
19 
20 
21 
22 
23 
24 
2 5  
26 
27 
28 
29 
30 
31 

0.0 
0.0 
0.0 

0.0 
0.0 

0.c 
0.0 

0.0 
0.0 
0.0 
0.0 
O . @  
0.0 
0.c 
0.0 
0.0 
0.C 
0.0 
0.0 
0.c 
0. c. 
0.G 
0.c 
O.@ 
0.0 
O.@ 
0.0 
0.0 
0.0 
0.0 
0.c 

0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0 .0  
0.0 
0. 0 
0.0 
0.0 
0. c 
0.0 
0.0 
0.0 
0.9 
0.0 
0.0 
0.0 
0.0 
0 .0  
c1.c 

0.0 

W 

0.0 
0.0 
0.0 
0.0 
0.G 
0.0 
0.C 
C.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0. c 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

W DOT 

-0.222040E 0 4  
-0.222040E 0 4  
-0.222040E 04 
-0.222040E 0 4  

-0.222040E 0 4  
-0.222040E 0 4  

-0.222040E 0 4  

-0.222040E  04 
-0.222040E 0 4  
-0.222040E 0 4  
-0 22204@E c 4  

-0.222040E 04 
-0 :222040€  04  

-0.222040E @4 
-0.222040E 0 4  
-0.22204aE 0 4  
-0.222040E 0 4  
-0.222040 E 0 4  
-0.222040E C4 
-0.22204CE 0 4  
-0.22204GE 0 4  
-G.222040€ 0 4  
-0 222040E  04 
-0:222040E 04 
-0.222040E 04 

-0.222040E 0 4  
-0.222040E 0 4  

-0.222040 E 0 4  

0.0 

- 0 . 2 2 2 0 4 0 ~   a 4  

0.0 

H S  

0.9 
0.0 
0.0 
0.0 
0. G 
0.0 
0. G 
0.0 
0.0 
0.0 
0, 0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

M S DOT 

0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Figure 8. Continued 



THE I N I T I A L   C O N D I T I O N S  FOR N -  2 FOLLOW 

S T A T I O N  

2 
1 

4 
3 

5 
6 
7 
8 
9 

10 
11  
12 
13 
1 4  
15 
16 
1 1  
18 
19  
20 

22 
21 

23 
24 
2 5  
26 
27 

29 
2 8  

30 
31 

STAT  ION 

9 
10 
11 
12 

14  
13 

16 
15 

11 
18  
19 
23 
21 
2 2  
23 

2 6  
25 

27 
2P 
29 
3c 
31 

24 

U 

0.G 
0.0 
0.0 
0.c 
0. c 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.6 
0.0 

0.0 
0.0 
0. c. 
0.0 
0.0 
0.0 
0.0 

0.9 
0.0 
0.0 
0.0 
0.c 
0.0 
0.0 
0.0 
0.0 

0.c 
0.0 

U DOT 

0. 0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
O.@ 

0.0 

0.0 
0.0 
0.0 
0.6 
0.0 
0.0 
0.0 
0.0 
O.@ 
t .0 
C.C 
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Subroutine  Descriptions 

This  program  controls  the  logical  connections  between  the  subroutines. 
The  case  description,  control  parameters,  physical  constants,  and 
boundary  conditions  are  both  read  and  printed  out  in  this  routine. The 
boundary  conditions  are  nondimensionalized  and  many of the  common 
indices  and  coefficients  are  determined  here.  The  iteration  procedure, 
the  load  incrementing  procedure,  and  the  calculation  for  the  estimate 
of the  next  solution  are  all  carried  out  here.  The  data  for re- 
starting  the  computation  is  written  on  tape  and  read  from  tape  here. 

Subroutine  GEgM 

This  subroutine  computes  the  nondimensional  geometry  functions 
of the  shell. 

Subroutine  BDB  (K,B,DB,D,DD) 

This  subroutine  computes  the  nondimensional  inplane  and  bending 
stiffnesses of the  shell. 

Subroutine @AD (K) 

This  subroutine  computes  the  nondimensional  Fourier  coefficients 
of  the  loads  applied to the  shell. 

Subroutine TL@D (K) 

This  subroutine  computes  the  nondimensional  thermal  loads. 

Subroutine INITL 

This  subroutine  computes  the  initial  conditions  on z and az/at. 

Subroutine PMATRX 

This  subroutine  calls  subroutines  HJ(K,MN) , EFG(K,MN) , ABC, and 
PANDD(K,MN) to set  up  the P, (P), P, (DEE),  and ?, (DST),  matrices 
given  by  equations (30). Matrices DL,  DG,  and  DF  are  set  up  for  the 
calculation  of x given  by  equation  (31a),  where 1 

x = DLRl + DGgl + DFfl 1 



The spec ia l  P matrix  for a she l l   w i th   an   i n i t i a l   po le ,   g iven   i n  Ref. 
[l], is  a l so  computed here.  Matrices ZFlM, ZIE!M, ZF3M, and Z F 4 M  
are set up for   the   ca lcu la t ion   of  %+1 given  by  equation  (3lb) 
where 

If the she l l   has  a f ina l   po le ,   the   mat r ices  CLOY CL1 and CL2 are  
prepared  for  the  calculation  of 5 given  by  equation (D-3) i n  Ref. 
[l], where 

depending upon whether  n = 0 , 1 or  2 .  

Subroutine HJ(K,MN) 

This  subroutine computes the  elements  of  the H and JAY matrices 
f o r  both  boundaries of the   she l l .  The elements of H and JAY a re  
defined  in  Ref.  [l]. 

Subroutine EFG(K,MN) 

This subroutine  prepares  the  elements  of  the E ,  F,  and G matrices 
f o r  each  meridian  station K and f o r  each  Fourier mode MN. The 
matrices E ,  F, and G are  given  in  Ref.  [l]. 

Subroutine ABC 

This subroutine computes the  elements of the A,  BEE, and C matrices 
defined  by  equation (25). 

Subroutine  P!D(K,MN) 

This subroutine computes the  elements  of  the P, (P), P, (DEE) ,  
and $,(DST), matrices f o r  each  meridian  station K and Fourier mode MN. These matrices are computed  and saved  because  they  do  not  change 
during  e i ther   the  i terat ion  procedure or the  load  increment  procedure, 
i . e . ,   they   a re  a f u n c t i o n   o f   t h e   s h e l l ' s   i n i t i a l  geometry and s t i f f -  
ness. 
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Subroutine XANDZ 

This  subroutine computes the x vector  using  the P, P, and P 
matrices  and  solves  for  the z vec tor   for   the   appl ied  and  pseudo 
loads.  The subourtines PHIBET(K) and TEAETA(K) are ca l l ed  and 
the  previous  solut ion  for   z ,  or  the  estimated  value  of z ,  i s  used 
to   calculate   the  nonl inear   Beta  and E t a  terms. The matrices FFS 
and FLS are  the  values  of f a t  t h e   i n i t i a l  and f i n a l  edges of t he  
s h e l l .  The subroutine F@RCE(K) i s  c a l l e d   t o   c a l c u l a t e   t h e   l o a d  
vector  g, (GEE) ,  and the  x vector a t  each  meridian  station. Once 
t h e  x vector i s  obtained  for a l l  meridian  s ta t ions  the  solut ion 
f o r  z given  by  equation  (31b) i s  obtained,  and  the  solution 

f o r  zi a t  a l l  the  other  meridian  stations  defined by  equation ( 2 9 )  

i s  obtained. The solut ion z a t  the  imaginary  station  off   the 
i n i t i a l  edge  of t h e   s h e l l  i s  obtained last .  The t e s t   f o r  
convergence  of  the  solution i s  made as z i s  computed. The spec ia l  
conditions  for computing z a t  e i t h e r   a n   i n i t i a l  o r  a f ina l   po le   a r e  
a l s o   i n  this  routine.  

h 

K4-1 

Subroutine INLML 

This  subroutine  computes,  for a she l l   w i th   an   i n f t i a l   po le ,  
the  nonlinear  terms t3 , B e y  Bse, TSs, and 'll at  the  pole.  The 

appropriate  equations  are  given  in R e f .  [l]. 
0s 

Subroutine FNL€$L 

This  subroutine  computes,  for a s h e l l  wi th  a f ina l   po le ,   t he  
nonlinear terms B s y  PO, Pse, Tss , and 11 a t  the  pole .  The 

appropriate  equations  are  given  in  Ref.  [l]. 
OS 

Subroutine @DES 

In  @DES, ar rays   tha t   def ine   those   se t s   o f   ind ices   tha t  combine 
t o  equal  each  value  of n i n   t h e  problem are  determined. mDES i s  
c a l l e d   p r i o r   t o   t h e  f i r s t  i t e r a t i o n  and a f t e r   eve ry   i t e r a t ion   un t i l  
a specified number of  Fourier  terms i s  reached. Each Fourier  index 
i n   t h e  problem i s  subtracted from a l l  other  Fourier  indices and the 
r e s u l t  i s  compared with a l l  Fourier   indices   to   see i f  the  new value 
e x i s t s   i n   t h e  program.  (The same comparison i s  never made twice .) 
If it does,   the  locations  of  the two indices   tha t  made the  combination 
are s to red   i n  two spec ia l  two-dimensional  arrays, I D  and JD. One 
argument o f  each  array i s  the  value  of  the new index and the  other 
i s  the  number of  combinations of indices   that   a lso  give  this   value 
of the  index. If there  is  no index i n   t h e  program t h a t  matches t h e  
new one,  then a new Fourier  term  has  been  generated and w i l l  be 



considered in   the   next   i t e ra t ion   for   so lu t ion .  The var iable  MAXD 
s t o r e s   t h e   t o t a l  number of  such  combinations f o r  each  value  of the 
Fourier  index.  In a similar manner , each  index i s  added t o  every 
other  index and the  sum compared with a l l  indices.  This r e s u l t  is  
s to red   i n   t he  two two-dimensional arrays, IS and JS, i n   t h e  same 
manner as was done for   the  subtract ion  case.  The var iable  MAXS 
s t o r e s   t h e   t o t a l  number of summation combinations for  each  value 
of  the  Fourier  index. A special   routine  handles  the  cases where the  
index is  added t o  and subtracted from i t s e l f .  The two-dimensional 
array IJS stores  the  location  of  the  index and the  var iable  Mculsy 
s t o r e s   t h e   t o t a l  number of  such  combinations.  With this  procedure 
t h e  series of products  that  make up the B ' s  and 7's  contain no 
zero  terms, and the  summation is car r ied   ou t   in  PHlBET(K) and 
TEAErCl(K) over  specifically  defined limits. 

Subroutine fWCRJ'T ( IM~DE) 

This  subroutine  prepares  the  printout material. Every IPRINT 
converged solut ion is  pr inted.  The Fourier  coefficients of t he  
inplane  forces,  meridional  transverse  force,  circumferential  bending 
moment, twist ing moment and ro ta t ions  can  be computed  and pr inted 
with  the  solution z for the  Fourier  coefficients of the  three 
displacements and meridional  bending moment. This output  material  
i s  converted from dimensionless form t o  dimensional  form  here. 
Provision i s  made to   p r in t   on ly  a t  s ta t ions  1, IFREQ+l, 2IFREQ+1, 
etc.  This  subroutine  also  performs  the summation process  for 
computing the to t a l   va lues  of the  forces ,  moments, displacements, 
and ro ta t ions  a t  the NTHMllX positions  around  circumference  prescribed 
in   the  input   data .  

Subroutine €@X ( K )  

This  subroutine  prints  the  solution a t  an i n i t i a l  and a f i n a l  
pole. 

Subroutine PHIBET(K) 

This  subroutine  calculates  the phis and car r ies  out t he  
multiplying and  summation procedure  for computing the  Beta non- 
l i n e a r  terms f o r  a given  meridional  station K. The arrays IS, JS, 
ID, JD, IJS, MAXS, MAXD, AND MAxsy prepared in   subrout ine @DES 
are  used  here. 
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Subroutine TECIETA (K) 

This  subroutine  calculates  the  inplane  forces and car r ies   ou t  
the  multiplying and  summation procedure  for  computing  the E t a  non- 
l inear terms f o r  a given  meridional  station K. The arrays IS, X, 
ID, JD, IS, MAXS, MAXD, AND MAXSY prepared in   subrout ine @DES 
are  used  here.  

Subroutine F,dRCE (K) 

This  subroutine computes the  2, (GEE) , vector,  equation (28) , 
and the  x vector,  equation  (29a), f o r  a given  meridional  station 
K. The vector GFES i s  the  nonlinear  value of a t  s t a t i o n  1. 

Subroutine UPDATE 

This subroutine  updates  the  storage  locations of the  Betas 
and Etas. It i s  cal led  in   subrout ine XANDZ a f t e r  a meridian 
s t a t  ion  change. 

Subroutine MATINV (A, N,  B y  My DETERM, IPIVdT, INDEX, NMAX, ISCALF:) 

This  subroutine  solves  the  matrix  equation AX = B where A i s  
a square  coefficient  matrix and B i s  a matrix of constant  vectors. 

A-1 i s  also  obtained and the  determinant  of A i s  available.   Jordan's 
method i s  used t o  reduce a matrix A t o   t h e   i d e n t i t y   m a t r i x  I through 
a succession  of  elementary  transformations: n y  n-l,... 1, A = I. 

If these  t ransformations  are   s imultaneously  ap  l ied  to  I and t o  a 
matrix B of constant   vectors ,   the   resul t  i s  A-y and X where AX = B. 
Each transformation i s  selected so tha t   t he   l a rges t  element i s  used 
in   t he   p ivo ta l   pos i t i on .  The subroutine has been  compiled  with a 
variable  dimension  statement A(NMAX,  NMAX), B(NMAX, M ). The 
following must be  dimensioned i n   t h e   c a l l i n g  program: IPIVOT(NMAX), 
INDFX(NMAX, 2) ,  A(NMAX, NMAX), B(NMAX, M) where IPIV@T and INDEX 
are  temporary  storage  blocks. An overflow may be  caused  by a 
singular  matrix. The de f in i t i on  of t he  arguments of this   subrout ine 
a r e  as follows: 

A = f i r s t  loca t ion  of a 2-dimensional  array  of  the A matrix. 

N = location  of  order of A; 

B = f i rs t  loca t ion  of a 2-dimensional  array  of  the  constant 
vectors B. 
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M = loca t ion  of t h e  number of column vec tors   in  B. 
M = 0 signals that   the   subrout ine is  t o  be used 
so le ly  for inversion, however, i n   t h e   c a l l  state- 
ment an  entry  corresponding t o  B must s t i l l  be 
present.  

DETERM - Gives the  value of the  determinant  by  the 
following  formula: 

lrPIVgfT - temporary  storage  block. 

INDEX - temporary  storage  block. 

N MAX = locat ion  of  max imum order  of A as s t a t e d   i n  
dimension  statement  of  calling program. 

I S C m  - used in  obtaining  the  value  of  the  determinant 
by the  following  formula: 

DET(A) = (10 l8 ) ISCALE (DETERM) 

A t  t h e   r e t u r n   t o   t h e   c a l l i n g  program A-' i s  stored a t  A 
and X i s  s tored a t  B. 
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CONVERSION OF U.S. CUSTOMARY UNITS TO S I  UNITS 

The In te rna t iona l  System of Units (SI) was adopted  by  the  Eleventh 
General  Conference on  Weights  and  Measures i n  1960. 
Conversion f a c t o r s   f o r   t h e  units used i n   t h i s   r e p o r t   a r e   g i v e n  i n  t h e  
f o l l a r ing   t ab l e  : 

Length i n .  2.54  x 10-2 
Modulus of axial 

s t r e s s ,   e l a s t i c i t y   p s i  6.895 x 10 3 

Temperature I degree  Fahrenheit I K=('F + 459.67)/1. 
~~ ~ . L .. 

newt on/me t e r 2 ( N/m2 ) 
kelvin (K)  

- .  ...~ 

*Multiply  value  given i n  U.S. Customary Unit  by  conversion  factor 
to   obtain  equivalent   value  in  S I  un i t .  

SHcThe pref ix   giga (G)  i s  used t o   i n d i c a t e  10 un i t s .  9 
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APPENDIX B 
PROGRAM LISTING FOR DYNAMIC EXAMPLF 

C 
C 
CTH 
C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 

5 
5 
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PT(M)=Oo 
TTfM)=Oo 
PR(M)=C. 
MT(M)=O. 
DMT(M)=O. 
DT(M)=G, 

MAXD(  M) =O 
MAXS(M)=O 

C A L L  GECM 
230 MAXSY(M)=O 

DO 86 K = l r K M A X  
IF(SORD-NE.0)  GO  TO 804 

86 MASS(K)=O. 
W R I T E ( 6  802) 

16 
l 6 H  

DO 978 K = l r K M A X   D E 0  RKK=R ( K  *CHAR 
OMXIK=OMXIIK)ICHAR 
GAMK=GAM(K)/CHAR 
OMTK=OMT (K )/CHAR 
O E O M X K = D E O M X ( K ) / ( C H A R * C H A R )  

802 FORMAT( I H l r  1 7 x 9  15H S T A T I O N  
1 OMEGA S 16H 

1 6 H  R A D I U S  
OMEGA T H E T A 1 6 H  

978 W R I T E ( 6 9 8 0 3 )  K I R K K , G A C K ~ O M X I K T O M T K , D E O ~ X K  
8@3 FORMAT(2GXr I 3  t 9 x 9  5 ~ 1 6 . 4 )  

810 F O R M A T ( 1 H l r   5 X 9 1 5 H   S T A T I O N  
804 W R I T E ( 6 , 8 1 @ )  

GO T O  805 

1 OMEGA T H E T A 1 6 H  
16H RAD1 US 16 

16H OMEGA S 16H 
2 MASS / /  1 D E 0  TEED=TEEO 

RKK=R ( K  )*CHAR 
OMXIK=OMXI(K) /CHAR 
GAMK=GAM(K)/CHAR 
GMTK=OMT(Kl  /CHAR 
DEOMXK=DEUMX (K 1 ( CHARWHAR ) 

9 7 9  W R I T E ( 6 r 8 1 3 )  KIRKK~GAWK,OMXIK,OMTK,OEOMXK,AMSS 
A M S S = M A S S ( K ) ~ T E E D * * ~ ~ E L A S T + T K N / C H A R * * ~  

0 0 5  MO=O 
M1=0 
M2=O 
M3=0 
ABN=CHAR/SIGO/TKN 
ZN=S IGO*TKN 

DO 979 K=l,KMAX 
IF(NDIMENoEQ.1)  TEED=l. 

813 FORMAT( 8x9 13, 9 X 1 6 E 1 6 . 4 )  

WRITE(6 ,112)  
112 FORMAT( / / / / 17X ,   1ZH  STATION 20H 

1 I F F N E S S  20H B P R I M E  2QH D PRIME 
B S T I F F N E S S  2 

C A L L  BDB(KIBIDB,D,DD) 
DO 888 K = l r K M A X  

BST=ELAST*TKN 

B=B*BST 
ZST=ELAST*TKN**3 

D = W Z S T  
DB=DB/CHAR*BST 
DD=DD/CHAR*ZST 

888 W R I T E ( 6 r 7 1 )   K V B T D ~ D B ~ D D  
71 FORMAT(20X  I3 ,4X,4EZOo6)  

CALL PLOADII) 
C A L L   T L O A D (  1 j 

W R I T E I 6  1 1 3 )  N ( M I  
DO 889 M=1 r MNMAX 
1FISORDeNE.OI GO T O  891 

1 1 3  FORMAT(J//25X,44HPRESSURE AND  TEMPERATURE COEFFICIENTS 
1 FOLLOW//)  

15H T T  15H pR MT 1 PT 1 5H PX 
2 5H DMT 1% 

H R I T E ( 6 , 1 1 4 )  
114 F O R M A f ( 5 X , 7 H S T A T I O N * 3 X * 1 5 H  

DO 890 K=l,KMAX I /  1 
C A L L   P L O A D ( K )  



8 90 
1 1 5  
8 8 9  
8 9 1  

2 0  

22 

2 8 0  

1 2 6  

C A L L   T L O A D ( K 1  
PRM=PR(MI/ABN 
PTM=PT ( M  ) / A B N  
PXM=PX( M 1 /ABN 
TTM=TT ( M 1 *ZN 
EMTM=MTIM)/CHAR*ZN*TKN*TKN 
DTM=DT ( M  )/CHAR*ZN 
DMTM=DMT(H)*ZN*TKN*TKN/(CHAR*CHAR) 

CONTINUE 
CONTINUE 
DELSQ=DEL**2 

M N I N I T = l  
MNMAXO=MNMAX 

W R I T E ( 6 9 1 1 5 )  K,PRMIPXM,PTMITTMIEMTM~DT”TM~DMTM 
F O R M A T ( 6 X v I 3 , 7 X , 7 E l 5 * 4 )  

T D L I = o   5 / D E L  
TDEL=2o*DEL 

DO 20 I=1,4 
DO 20 J=1,4 
U N I T ( I , J ) = O .  
I F ( 1 o E Q . J )   U N I T ( I , J I = l o  
CONTINUE 
NMAX=MAXM*KMAXZ 
DO 2 2  K=l,NMAX 
DO 2 2  I=1,4 
ZDOT( I K)=O. 

Z3( I ,K)=O. 
ZO( I r K ) = O o  
Z(   I ,K)=Oo 

I F ( I C o E Q o 0 )  GO T O   8 3 4  

F O R M A T ( / / / / 5 X , 2 8 H T H I S  I S  A RESTARTED  SOLUTION/ / )  
I F ( I T A P E o G T . 1 )   W R I T E ( 6 9 2 8 0 )  

I F ( I T A P E o G T . 1 )  GO TO 834 

Z2(  I ,KJ=O. 

ALOAD=DELOAD 

CALL I N I T L  
ACO=CHAR*SIGO/ELAST 
ACM=SIGO*TKN*+S/CHAR 
DO 8 3 0  M=l,MNMAX 

W R I T E ( 6 r 1 2 6 )   N ( M )  
V,M= ( M - 1 )  *KYAX2 

F O R M A T ( / / / / 5 X , 2 9 H T H E   I N I T I A L   C O N D I T I O N S  FOR N = I 3 , 8 H  F 
W R I T E ( 6 r 1 2 7 )  

1 2 7  F O R M A T ( ~ ~ X T ~ H S T A T I O N , ~ X ~ ~ ~ H  U 
1 2 0  H W M S  / /  1 20 H 

2 0 H  

DO 8 3 1  K=Z,KMAXl 

T U = A C O * Z O ( ~ T M K )  
TV=ACO*ZO(ZrMK) 
TW=ACO*ZO( 3, MK I 
TM=ACM*Z0(4,MKI 

W R I T E ( 6 y 7 1 )  KK,TU,TV,TW,TM 

W R I T E ( 6 , 1 2 9 )  

MK=K+MM 

K K = K - l  

8 3 1   C O N T I Y U E  

129 F O R M A T ( / / / 1 9 X ~ 7 H S T A T I O N ~ 3 X ~ Z O H  
1 2 OH W DOT 

U DOT  2GH 

DO 8 3 2   K = 2 r K Y A X 1  
2 0 H  M S DOT / 

ACD=CHAR*SIGO/(  ELAST*TEEO) 
AMD=SIGO*TKN*+3/(CHAR*TEEO) 
MK=K+MM 
TU=ACD* ZDOT ( 1, MK 1 
TV=ACD*ZDOT(Z,MK) 
TW=ACD*ZDOT(3, MK I 
TM=AMD*ZDOT(4,  MK) 

W R I T E ( 6 y 7 1 )  KK,TUyTV,TW,TM 
KK=K- 1 

DO 8 3 3  1=1 4 z (  I,MK)=ZO( I,MK)+ZDOT( I ,MK)*DELOAD 
Z 2 (   I T M K ) = Z O (   I , M K ) - Z D O T ( I , M K ) * D E L O A D  

8 3 3  Z ~ ( I I M K ) = Z O ~ I I M K ) - ~ ~ ~ Z D O T ( I , M K ) ~ D E L U A D  
832   CONTINUE 
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31 " 
G U  TO 62 

3 6 1   W R I T E ( 6 y 2 7 1 )  
C WRITE  RESTART  DATA ON TAPE  UNIT  8 

IF(1TAPE.NE.G)  REWIND 8 
I F ( I T A P E . E Q . l . O R . I T A P E ~ E Q o 3 1  W R I T E ( 8 )   ( ( Z ( I , J P ) , Z O ( I I  

'C f l  T n  Einrt 
r Z 3 (   I , J P ) , I = l y 4 ) r J P = l r N M A X )  

3 6 5  
GO T 
FORP 
FORP 
FORM-. . 
FORMAT ( 
FORYAT ( 
FORMAT ( 
FORMAT ( 
FORMAT ( 
FORMAT ( 

6E12.31 
4E16.8) 
6E12.3) 
l H 1 ~ 4 8 X y  

4 9 X 9 2 1 H -  
1 X 1 2 A 6 / /  / 

1 
.- 

6H--PR 
1 

. I N P U T  

OB L 

DAT 

EM NUMBER 

' A  RECORD- 
LONS ARE: / / I  

F O R M A T ( l X y l H (   9 4 E 1 0 . 3 1 1 5 H )  N ST + ( , 4 E 1 0 . 3 9 1 2 H I  V 

FORMAT( 1 x 1  1 H (   9 4 E 1 0 . 3 9 1 5 H I  Q S ( , 4 E l G o 3 , 1 2 H )  W 

FORMAT( l X , l H (   9 4 E 1 0 . 3 1 1 5 H )   P H I  S ( r 4 E 1 0 . 3 ~ 1 2 H )  M 

1 E10.3)  

L E10.3) 

I X T ? " S ~ T ~ ~ H C I R C U M F E R E N T I A L  COORDIkATES  FOR  PRINT RE 
L A "  T I  I 

2"" 

216 FORM 
3 S O N t T  R A T T n - - - - - - - - - - r - - - - - - - F 1 7 - ~ ~ / 1  

1 IANS,  ARE:/ 1 

"- -""""- E 1 2 0  

2 2 0  FORMAT ( 1H1v  89H THE MAXIMUM NUMBER OF LOAD C H P  

2 2 1  FORMAT ( 1 H 1  t 79H THE MAXIMUM NUMBER  OF LOAD  STE 

2 2 2   F O R M A T ( l H 1 , 1 1 9 H  

2 1 7  F O R M A T ( ~ O X I E ~ ~ . ~ ~ ~ ( ~ H , , E ~ ~ ~ ~ , ~ H  1 )  

1 E N  MADE. END PROBLEM  NUMBER141 

1 TAKEN. END PROBLEM  NUMBER141 

i.XfMUM NUMBER OF ITERATIONS.  THE  LOAD  FACTOR HAS  BEEN 
THE  SOLUTION D I D  NOT CONVERGE 
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1 TAKEN. END  PROBLEM  NUMBER141 
END 

C 

C 

SUBROUTINE GEOM 
REAL  MASS 
COMMON 

1 / I B L 4 / K M A X   K L  O / B L ~ / R ( Z O O J  ,GAM( 
3 / B L l l / O M X 1 ( 2 0 0 ) ~  
4 / B L 1 7 / D E L  
4 / B L 2 0 / D E O M X ( 2 0 0 )  
6 / B L 3 2 / T K N , E L A S T v  
l / B L 1 0 2 / D E L O A D / B L  
GEOMETRY  DATA 

AKX=KMAX-l 
DEL=l./AKX 

DO 11 K=l,KMAX 
A K = K  

THET=ARSIN(2 .280 

200) ,OMT(200)  
PHEE,TO,TZ 

. 1 0 3 / Y A S S   ( 2 0 0 )  
CHAR, S I G O  

11/CHAR) 

G A M ( K ) = ( 2 . 2 8 0 1 / C H A R ) / R ( K )  
R ' ( K ) = ( 7 . 9 4 9 9 + ( A K - l . ) * ( Z o 2 8 0 1 ) / A K X ) / C H A R  

OMXI(K)=O.  

O M T ( K ) = C O S ( T H E T ) / R ( K )  
DEOMX(K)=O. 

11 CONTINUE 
RETURN 
END 

M A S S I K I = l .  

SUBROUTINE 

CCMMON 
REAL  NU 

Z / N U , U l (   1 0 1  7 
l / B L 3 2 / T K N l  E 

S T I F F N E S S  DAT 
3 / B L 1 7 / D E L  

~ = 1 . 0 8 9 0 8 2  
D=.09075683 
DB=O. 
CD=O. 
RETURN 
END 

LAST  CHAR,SIGO/BL lS 

A 

Vl(ld~,W1(10),V2(10),u2(lo~,wz~lo~lu3(lo~,v 

SUBROUTINE  PLOAD(K1 
COMMON 

W ~ ~ ~ ~ ~ ~ ~ ; ; O )  l ~ ~ ~ , ~ ~ € l ~ ~ ~ ~ ~  l / B L 3 2 / T K N , E L A S T l C H A R   S I G O / I B L 2 / N N ( l O ) , M N I N I T  

5 
COMMON, 
COMMON 

l / I B L B / L S T E P ,   I T R  
l / B L l 0 2 / D E L O A D / B L 1 0 3 / M A S S ( 2 0 0 )  

RETURN 
END 

REAL NU 
SUBROUTI NE T L O A D   ( K )  

COMMON 
1 / I B L 1 / M N M A X / I B L 2 / N N ( l O ~ ~ M N I N I T  
2 / B L 5 / T T ( l O ) , E M T ( 1 0 ) ~ D T ( l O ) ~ D M T ( l O )  
3/BL32/TKN,ELAST,CHAR  SIGO 
4 / 6 L 6 / 2 ( 4 , 2 2 0 3   , S O E l O S €   A L O A D / B L 1 5 /  
5 N U ~ U l ~ l O ~ ~ V l ~ l O ~ ~ W 1 ~ ~ ~ ~ ~ V 2 ~ l ~ ~ ~ U 2 ~ l O ~ ~ W 2 ~ l @ ~ ~ U 3 ~ l ~ ~ ~ V 3  
l / I B L B / L S T E P , I T R  

RETURN 
END 



C 

SUBROUTINE I N 1   T L  
COMMON / B L l O l / Z 0 ( 4  220)rZ2(4,220),23(4~22O),DELSD 

1 / B L ~ O ~ / Z D O T ( ~ ~ ~ ~ ~ ) / B L ~ / Z ( ~ ~ Z ~ O ) ~ S O E T O S E T A L O A D  

2 / I B L 1 / M N M A X / I B L 9 / M A X M / I B L l 2 / K M A X l ~ K M A X 2 ~ N C O N V / I B l  
l / I B C 2 / N N ( 1 0 )   r M N I N I T  

~ / B L ~ ~ / T K N , E L A S T , C H A R T S I G O / B L ~ O O / S O R D ~ T E E O  
I N I T I A L   C O N D I T I O N S  DATA 

N N ( l ) = O  
N N ( 2 ) = 1  
N N (   3 ) = 2  
N N ( 4 ) = 4  
P I = 3 . 1 4 1 5 9  
DO 2 M = l  ,MAXM 
IF(M.EQ.1) V E L = - 4 4 4 * 0 8 / P I  
IF(M.EQ.2)  VEL=-444.08/2.  
IF(M.EQ.3)  VEL=-444.08*2./(3.*PT) 

DO 2 K = 2 r K L  
IF(M.EQ.4)   VEL=444.08*2. / (15.*PI)  

I = K + l + ( M - l ) * K M A X Z  

RETURN 
END 

2 ZDOT(3,I)=VEL*ELAST*TEEO/(CHAR*SIGO)*lO. 

.4 /KM 



E X X l ( M S ) = Q l  
E T X l   ( M 3  )= -Q1  

B X l ( M O ) = B E T  
B T l ( M O ) = B E T  

CALL T L O A D ~  11 

2 TO=O. 
IF(M0.EQ.O) GO TO 3 

C A L L   B D B I l  B DPvDvDD)  

I 3 = 1 2 + 1  
12=2+(MO- l ) *KMAX2 

I4=13+1 ~ O ~ ~ * S 1 * ( ( - 1 ~ 5 * Z ( 1 ~ I ~ ~ + 2 . * Z ~ l ~ I 3 ~ ~ ~ 5 * Z ~ l ~ ~ 4 ~ ~ / D E L + O M X I  
3  EXXI.( M 1  )=PHEE*( TO+. 5*T2 1 
1+. 5*SOE+BET)  -TT ( MO) *ALOAD 

RETURN 
E NO 

COMMON 
SUBROUT I NE FNL  POL 

2 / I B L 3 / M O , M l r M 2 v M 3  
3 / I R L 4 / K M A X v K L  
4 / IBL12 /KMAX1  KMAXZvNCONV 
0 / B L 6 / Z f 4 v 2 2 0 {  ,SOE,OSE,ALOAD 

3/BLll/OMXI(200)~PHEE~TOvTZ 
6 / B L 7 / D 1  t S 1  

0 / B L 1 7 / D E L  
9 / B L 2 7 / B X 3 ( 1 0 1  BT3(1O)rBXT3(10)vBE3(10) 
O / B L 2 8 / E X X 3 ~ 1 0 ~ r E T T 3 ~ l O ~ ~ E ~ X 3 ~ ~ ~ ~ v E X T 3 ~ L O ~ v E X 3 ~ l O ~ v ~ ~ 3 ~  
l / B L S / T T (  10) tEMT(  10) ,DT(  10) r C " (  10) 
2 / I B L 1 3 / I T R M A X , L S M A X  

l / I B L l / M N M A X  

DO 1 MN=lrMhMAX 
BX3 ( MN )=O. 

B X T 3 (  MN)=O. 
BT3  (MN)=O. 

EX3  (MN)=O. 
BE3  (MN)=O. 

ET3  (MN)=O. 
ETX3(MN)=O. 

1 EXX3(  MN )=Oo 
CALL  BDB(KMAX,B,DB,DvDB) 
IF(M1.EQ.O)  RETURN 
K M = K M A X l + ( M l - l ) * K M A X 2  
K M l = K M - l  
KM2=KM-2 

BET=.5*PHEE**2 
PHEE=-(1.5*Z(3,KM)-2.*Z(3,KMl)+.5*Z(3tKM2))/DE~+OMXI(K 

I F ( ITRMAX. EO. 1 1 BET=@ 
T 2=0  0 

IF(MZ.EQ.0) GO TO  2 
KM=KMAXl+(  M2-1)  *KMAX2 
KMl=KM- 1 
KH2=KM-2 

B X 3 ( M Z ) = B E T  

B X T 3 ( M 2 ) =   B E T  
BT3  ( M 2  )=-BET 

E T X 3 ( M l ) = Q l  

E X X 3 ( M 3 ) = Q 1  
ETX3(  M 3  )= -Q1  

KM=KMAXl+(MO- l ) *KMAX2 
CALL  TLOAD( KMAX 1 

KMl=KH- 1 
KM2=KM-2 
BX3  I MO 1 =BET 
BT3(MO)=BET 

T 2 = B * D 1 * ( ( l 0 5 * Z ( l , K M ) - 2 . * Z ( l , K M 1 ) + . 5 * Z ( 1 , K M 2 ) ) / D E L + ~ 5 *  
Q1=.5*PHEE*TZ 

IF(M3.EQ.O) GO TO 2 

2 TO=O. 
IF(MO.EQ.0) GO TO 3 

TO=B*S1*((1.5*Z(l,KM)-2~*Z(l~KMl)+~5*Z(ltKM2~)/DEL+OMX 



3 E X X j ( M l ) = P H E E * ( T O + . 5 * T Z )  
1 2 ( 3  KM)+.S*SOE*BETI -TT(MO)*ALOAD 

RETURN 
END 

COMMON 
SUBROUTINE MODES 

l / I B L l / M N M A X  
2 / I B L Z / N ( l O ) r M N I N I T  

4 , l ~ ) ~ J D ( 1 0 ~ 1 0 ) r I J S ( l ~ ~  
3 / I B L 7 / M N M A X O r M A X D ( 1 0 )   M A X S ( l . 0 )   r M A X S Y ( l 0 ) r  I S ( l O l l O ) r J S (  

5 / I B L 9 / M A X M  
6 / I B L l l / I C O R F L r I P A S S  

IF(MN1NIToGToMAXM)  RETURN 
IF(MAXM.EQ.1)  RETURN 

DO 1 M N = l r  MNMAXO 
NMN=N( MN 1 
NNS=MN 

NMM=N( MM 1 
NTEST=I  ABS ( NMN-NMH 1 

DO 1 MM=NNSrMNMAXO 
I F ( M N I N I T . G T o M N )   N N S = M N I N I T  

DO 2 MMFT=lrMNMAX 
IF(NTEST.EQ.N(  MMFT) ) GO TO 10 

IF( ICORFL.EQ.1)  GO TO 1 
2 CONTINUE 

MNMAX=MNMAX+I 
N(MNMAX)=NTEST 
MMFT=MNMAX 

10 IF(NMN-NMM) 11 l r 1 2  
IF(MNMAX.EQ.MAXM) I C O R F L = l  

11 LOCD=MAXD(MMFT{+I 
MAXD(MMFT)=LOCD 

GO TO 1 
12 LOCD=MAXD( MMFT 1 +1 

MAXD(MMFT1  =LOCD 

ID(LOCD,MMFT)=MM 
JD(LOCD*MMFT)=MN 

ID(LOCD,MMFT)=MN 
J D (  LOCD 9 MMFT ) = M M  

DO 301 MN=lrMNMAXO 
1 CONTINUE 

NMN=N(  MN) 
NNS=MN 

NMM=N( MM 1 
NTEST=NMN+NMM 

I F ( M N I N 1 T o G T o M N )   N N S = M N I N I T  
DO 301 MM=NNS, MNMAXO 

DO 3 0 2   M M F T = l r  MNMAX 
IF(NTEST.EQ.N(MMFT) 1 GO TO 310 

302 CONTINUE 
I F (  ICORFL.EQ.1) GO TO 3 0 1  

MNMAX=MNMAX+l 

HMFT=MNMAX 
N  (MNMAX 1 =NTEST 

LOCS=MAXS(MMFT)+l  
MAXS(MMFT)=LOCS 

GO TO 3 0 1  

MAXSY ( MMFT 1 =1 
IJS(MMFT)=MN 

MNINIT=MNMAXO+l  

IF(MNMAX.GE.MAXM) GO TO 301 

IF(MNMAX.GE.MAXM) I C O R F L = l  
3 1 0  IF(NMN.EP.NMM) GO TO 3 6 0  

J S (  LOCS 9 MMFT )=MM 
IS(LOCS,MMFT)=MN 

3 6 0  IF(NMN.EQ.0) GO TO 3 0 1  

301 CONTINUE 

lF( IPASS.LT.2.AND.MNINIT.LE.MNMAX) CALL  PMATRX 
I F (  1CORFL.GT.O) I P A S S = I P A S S + l  

RETURN 



END 

201 

REAL  NU-LAMZ MT  MASS 
SUBROUTINE  XANDZ 

COMMON 
C O M M O N / B L 5 / T ~ ( l d ~ ~ M T ( l O ~ ~ D T ( l O ~ ~ D M T ( l O ~  

2 / 1 B L 3 / M 0 1 M l r M Z r M 3  

4 / 1 B L 5 / I B C I N L , I B C F N L  
3 / I B L 4 / K M A X p K L  

3/ IBL7/MNMAXO,MAXD(lO)  M A X S ( 1 0 ) ~ M A X S Y ( 1 0 ) ~ I S ( l O ~ l O ~ ~ J S (  

1/ I B L l / M N M A X  

5 / I B L 6 / K L L  

4 , 1 0 ) ~ J D ( 1 0 ~ 1 0 ) ~ I J S ( l O ~  
COMMON/ IBL8/LSTEP,   ITR 

8 / I B L l Z / K M A X l , K M A X 2 r N C O N V  

9 / B L l / A ( 4 r 4 )   v B E E ( 4 9 4 )   r C ( 4 9 4 )  
l / I B L l 3 / I T R M A X , L S M A X  

2 / B L 3 / P R ( 1 0 )   P X ( l O ) , P T ( l O )  

l Z F 4 M ( 4 * 4 , 1 0 )  
8 / B L 6 / Z ( 4 , 2 2 0 ) r S O E , O S E I A L O A D  

O / B L 8 / R ( 2 0 0 ) , G A M ( 2 0 0 )   O M T ( 2 0 0 )  
3 / B L i ' / D l r S l  

6 / B L 1 4 / L A M 2 r L S D 1 8 , L S D l N  
7 / B L 1 5 / N U ~ U l ~ l O ~ r V 1 ~ l ~ ~ ~ W l ~ l O ~ ~ V 2 ~ l O ~ ~ U 2 ~ l ~ ~ ~ ~ 2 ~ l ~ ~ ~ U 3 ~  

5 / B L 4 / P ( 4 , 4 , 3 0 0 )   , X ( 4 , 2 0 0 ) r Z F l M ( 4 , 4 r l C )   r Z F 2 M ( 4 , 4 t l O ) , Z F 3  

~ / B L ~ / F F S ( ~ , ~ ~ ) V E L ~ S ( J ) , G E E S ( ~ , ~ O )  

8 W 3 ( 1 0 )  
COMMON 

1 / B L 1 6 / E P S  
2 / B L 2 7 / B X 3 ( 1 0 )  BT3(10)rBXT3(10),BE3(10) 
4 / B L 2 9 / B X l ~ l C ~ ~ B T l ~ l O ~ ~ B X T l ~ l O ~ ~ B ~ l ~ l O ~ ~ B X 2 ~ l C ~ ~ B T 2 ~ l @ ~  
3 / B L 2 8 / E X X 3 ( 1 0 j , E T T 3 ( 1 0 )  , E T X 3 ( 1 0 )   E X T 3 ( 1 0 )   t E X 3 ( 1 0 ) , E T 3 1  

5 B E 2 ( 1 0 )  

8/BL31/DEL!Q E X T l (   1 C  1 
9 / B L 1 8 / E L 1 ( 4 j , E L L ( 4 )  

l / B L 1 0 3 / M A S S ( 2 0 0 )  

6 / B L 3 0 / E X X l ~ l O ~ ~ E T T l ~ l O ~ ~ E T X l ~ l O ~ ~ E X l ~ l O ~ ~ E T l ~ l O ~ ~ E X X 2 ~  
7 , E T X 2 ( 1 0 )  EXT2(10)rEX2(10),ET2(10) 

COMMON / B L 1 0 0 / S O R D , T E E O / B L 1 C ' l / Z 0 ~ 4 ~ 2 2 0 )  r Z 2 ( 4 7 2 2 O ) r Z 3 ( 4  
1 /BL104/ZDOT(4,220)/BLlO2/DELOAD 

D I M E N S I O N  E L L S ( 4 ) , F L S ( 4 ) , Z T ( 4 ) , I P I V O T ( 4 1 2 )  
l , C L 0 ( 4 9 4 ) t C L 1 ( 4 ~ 4 ) , C L 2 ( 4 1 4 )  
2 r T Z M A X ( 4 , 1 0 )   Z D D ( 4 )  

DO 2 0 1  I=1,4 
EQUIVALENCE ~CLC(l),ZFlM(l)),(CLl(l),ZF2M(l)),(CL2(1), 

M J = l + ( M - l ) * K M A X 2  
DO 201 M = l  ,MNMAX 

T Z M A X ( I I M ) = A B S ( Z ( I , M J ) )  
DO 201 K=2rKMAX2 
KM=K+(M-l)*KMAXB 
A Z T S T = A B S ( Z ( I   K M ) )  

. CONTINUE 
NCONV=l 

IF(AZTST.GT.T~MAX( I,M) 1 TZMAX(I,M)=AZTST 

DO 1 M=lvMNMAXO 
I F (  ITRMAX.  EQ.1) GO TO 66 

U l ( M ) = Z ( l r I )  
I = l + ( K M A X + Z ) * ( M - l )  

V l ( M I = Z ( 2 r I I  
W l I M ) = Z ( 3 , 1 )  

U 2 ( M ) = Z ( l , I l )  
11= 1+1 

. W 2 ( M ) = Z ( 3 r I l l  
V 2 ( M ) = Z ( 2 , 1 1 )  

I F ( I B C I N L . L T . 0 )  GO TO 100 

DO 2 M=lrMNMAX 
C A L L   P H I B E T ( 1 )  

B X l ( M ) = B X 3 ( M )  
B T l ( M ) = B T 3 ( M )  
B X T l ( M ) = B X T 3 ( M )  

! B E l ( M ) = B E 3 ( M )  
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102 
3 

4 

5 

66 

67 

8 

9 
20 

1@ 

11 

12 

68 

C A L L   T E A E T A ( 1 )  

E X X l ( M ) = E X X 3 ( M )  
E T T l ( M ) = E T T 3 ( M I  

E X T l ( M ) = E X T 3 ( M )  
E T X l ( M ) = E T X 3 ( M )  

E X l ( M ) = E X 3 ( M )  
E T l ( M ) = E T 3 ( M )  
C A L L   P H I B E T ( 2 )  

B X Z ( M ) = B X 3 ( M )  
B T Z ( M ) = B T 3 ( M )  
B X T Z I M ) = B X T S ( M I  

CALL  TEAETA(  2 1 
B E Z ( M ) = B E 3 ( M )  

E X X Z ( M ) = E X X 3 ( M )  
E T T E ( M ) = E T T 3 ( M )  
E T X 2 ( M ) = E T X 3 ( M )  
E X T 2 ( M ) = E X T S ( M )  
E X P ( M ) = E X 3 ( M I  
E T Z ( M ) = E T 3 ( M )  
C A L L   P H I B E T ( 3 )  
C A L L   T E A E T A ( 3 )  
CONTINUE 

GAMl=GAM( 1) 
CALL   TLOAD(  1) 

DO 3 M=lrMNMAX 

DO 4 M = l  r MNMAX 

DO 5 M = l  t MNMAX 

C A L L   B D B ( l t B l r D B r D r D 0 1  
I F ( I B C I N L . L T . 0 )  GO TO 20 

DO 8 M = l  r MNMAX 

F F S ( l , M ) = - T T ( M ) * A L O A D + O S E * ( B X l ( M ) i  
I F ( I T R M A X o E Q o 1 )  GO TO 67 

F F S ( Z , M ) = O S E * ( B l   * D l  
FFS(3rM)=LAM2*GAM1*Dl*MT(M)*ALOAD- 

* B X T 1  ( M I  

GO TO 8 
F F S ( l r M ) = - T T ( H ) * A L O A D  
F F S ( 2 r M ) = O o  
F F S ( 3 , M ) = L A M Z * G A M l * D l * M l ' ( M ) * A L O A D  
FFS(4 rM)=O.  
DO 9 1=1 4 
E L l S (  I )  =ALOAD*EL l (  I 
CALL  FORCE ( 1) 
CALL  FORCE( 2 1 

KP=K+ l  

C A L L  UPDATE 
CALL P H   I B E T  ( KP 1 
CALL T E A E T A ( K P 1  
C A L L  FORCE ( K) 

DO 10 K = 3 r   K L L  

IF(1TRMAX.EQo.l) GO TO 10 

I F ( I T R M A X o N E . 1 )  CALL  UPDATE 
I F ( I B C F N L o L T o 0 )  GO TO 120 
IF ( ITRMAXoEQ.11  GO TO 11 

CALL   TEAETAfKMAX)  
C A L L   P H I B E T ( K M A X 1  

CALL  FORCE ( K L  1 
CALL  FORCEtKMAXI  

E L L S (  I )  =ALOAD*ELL( I )  
GAML=GAM(KMAX) 

CALL TLOAD(KMAX1 

DO 12 I = 1 t 4  

C A L L   B D B ( K M A X v B L r D B t D r D D )  

FLS(4 )=O.  

DO 14 M = l , M h M A X  
IF(ITRMAX.EQ.1) GO TO 68 

F L S ( 2 )  = O S E * ( B L * D l * B X T 3 ( M ) + E X 3 ( M )  
F L S ( l ) = - T T ( M ) * A L O A D + O S E * ( B X 3 ( M ) + B E  

FLS(3)=LAMZ*GAML*Dl*MT(M)*ALOAD-(E 
GO TO 69 
F L S (  1 )=-TT( M)*ALOAD 

FLS(3)=LAM2*GAML*Dl*MT(M)*ALOAD 
F L S ( Z ) = O o  

- B E 1  ( 
+EX1 
.( EXX 
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69 

15 

14 

1 50 

1 

18 

17 
16 

22 
2 1  

23 
25 
30 

100 

101 

120 

131 

CONTINUE 

I J=KMAX*M 
I K=KL+KMAX* ( M-1)  

L=M*KMAX2 
DO 14 I = l r 4  
SUMZ=O. 
DO 15 J = l r 4  
SUMZ=SUMZ+ZFlM(I,JtM)*ELLS(J)+ZFZM( 
Z( I ,L )=SUMZ 
L S = 1  
DO 16 M=lrMNMAX 

K=KMAX2-L 
DO 16 L=LS,KMAX 

KPX=K-l 
KZ=K+l  

JK=KZ+(M-l)*KMAXP 
IJ=KPX+(M- l ) *KMAX 

KK=JK-1 
DO 17 I = l r 4  

DO 18 J = l r 4  
SUMZ=O 

SUMZ=SUMZ-P(I,JtIJ)*Z(J,JK) 
SUMZ=SUMZ+X ( I, I J 1 

IF(ASUMZ.GT.l .E+lS)  ITR=ITRMAX 

D E L Z = A B S ( Z ( I r K K ) - S U M Z )  
IF(NCONV.NE.1 .OR. ASUMZ .LT.  1.E-n 

Z T E S T = E P S * T Z M A X ( I t M )  
IF(DELZ.GT.ZTEST) NCONV=O 
Z ( I , K K ) = S U M Z  

I F ( I B C I N L . L T . 0 )  GO TO 30 

.X(JIIK)+ZF~M(I,J~M)*FLS(J) 

ASUMZ=ABS(  SUMZ 1 

CONTINUE 

DO 25  M = l  MNMAX 

C A L L  A B C  
I J = Z + ( M - l ) + K M A X Z  
I J l = I  J + l  
I J2=I J- 1 

CALL E F G ( ~ , M )  

DO 2 1  1=1t4  
SUMZ=O. 
DO 22 J = l r 4  
S U M Z = S U M Z - A ( I , J I * Z ( J , I J l ) - B E E ( I t J ) ~  
Z T (  I )=SUMZ+GEES( I ,MI  
C A L L   M A T I N V ( C , 4 r Z T *   1 t D E T E R M q   I P I V O T t  
DO 23 I = l r 4  
Z ( I , I J 2 ) = Z T ( I )  
CONT I N U  E 

C A L L   I N L P O L  
RETURN 

DO 101 M = l  MNMAXO 
U l ( M ) = U Z ( M I  

Wl (M)=WZ(M)  
V l ( M ) = V P ( M )  

U 2 ( M ) = Z ( l t I J )  
I J=3+KMAX2* ("1) 
V 2 ( M ) = Z ( 2 t I J )  
W 2 ( M ) = Z ( 3 r I J )  

I F (  ITRMAX.NE.1) CALL  FNLPOL 

IF(MZ.EQ.0) GO T O  122 

GO TO 102 

CALL   FORCE(   KL )  

L l=KMAXl+(   M2-1   ) *KMAX2 
L=KL+(M2-1)*KMAX 

DO 130 I = l  r 4  
SUM=O. 
DO 1 3 1  J = l t 4  
SUM=SUM+ClZ ( I ,  J 1 *X ( Jt L 1 

D E L Z = A B S ( Z (   I t L l ) - S U H )  
IF(NCONV.NE.1 .OR. ASUMZ.LT.1.E-05) 

ZTEST=EPS*TZMAX(  11M2) 

ASUMZ=ABS ( SUM) 

ItJt 

' 5 )  G 

[ Z (  JI 

I NDE 

GO 

80 TO 1 7  

I J )  

' X t 4 1 I S C A L E )  

T O  130 
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130 
1 2 2  

133 

132 
1 2 3  

1 3 5  

134 
1 2 4  

5 )  GO 

GO TO 

TO 1 3 2  

134 

SUBRUUT I N E  ABC 
COMMON 

1 / B L 1 7 / D E L  

3 / B L l / A ( 4 ~ 4 )   ( B E E  
2 / ! 3 L 2 5 / E ( 4 , 4 ) , F (  

D2=2m / D E L  
DO 1 I = l r 4  
DO 1 J = l  4 

F I J = F ( I  J )  
BEE( 1, J j=-Zm*DE 

DEIJ=DZ*€(I,J) 

1 A ( I , J ) = D E I J + F I J  
C (  I , J ) = D E I  J-FI J 

RETURN 
END 

414 
(4, 

I J+ 

) / B L 1 2 / T D L I , T D E L  

v J )  

SUBROUTINE  PANDD(KvMN1 

l / I B L 4 / K M A X , K L  
z / B L l / A ( 4 , 4 ) r B E E ( 4 , 4 ) r t ( 4 , 4 )  
5 / B L 4 / P ( 4 , 4  2 0 0 ) r X ( 4 , 2 O a ) , Z F l M ( 4 1 4 1 1 0 ) , Z F 2 ~ ( 4 ,  

l / B L 3 4 / D E E ( 4 , 4 , 2 0 0 ) , D S T ( 4 1 4 r 2 0 0 1  

COMMON 

4ZF4M(  4, 4 ,161 

D I M E N S I O N  T M ( 4 , 4 ) r I P I V O T ( 4 ) r I N D E X ( 4 r 2 1 r X 2 ( 4 )  
IKL=K+KMAX*(MN- l )  

DO 1 I = l r 4  
K L I = I K L - l  

DO 1 J=1,4 
SUM=O. 
DO 2 L=1,4 

2 SUM=SUM+C( I L ) * P ( L ,   J r K L I )  
1 TM(I,J)=BEE~I,J)-SUM 

CALL M A T I N V ( T M , ~ ~ X ~ , O I D E T E R M , I P I V O T , I N D E X , ~ ~ I  
DO 5 J=1,4 
DO 5 I = l r 4  

DO 6 L=1,4 
SUMC=O 
SUMA=O. 

41 1 C  I v Z F 3  

SCALE) 



6 

5 

SUHA=SUMA+TM(I9L)*A(LtJl  
SUMC=SUMC+TM(I,L)*C(LIJ) 
P ( I   J v I K L ) = S U M A  

D S T ( I v J 9 I K L I = S U M C  
DEEII,J,IKL)=TM(I.JI 
RETURN 
END 

SUBROUTINE  HJ(K9MN)  
COMMON 

O / B L 8 / R ( 2 0 0 )   G A M ( 2 0 @ ) , O M T ( 2 0 0 )  

3 / B L l l / O M X I ( 2 0 O ) ~ P H E E , T O , T 2  
3 / B L 1 4 / L A M 2   L S D 1 8 r L S D l N  

2 / B L 2 0 / D E O M X f 2 0 0 )  

4 / B L 1 5 / N U ~ U ~ ~ 1 O ~ ~ V 1 ~ l ~ ~ ~ W l ~ l O ~ ~ V 2 ~ l O ~ ~ U 2 ~ l O ~  
5 W 3 ( 1 0 )  
6 / B L 1 7 / D E L  

8 / I B L 2 / N ( 1 0 )   M N i N I T / I B L 4 / K M A X , K L  
7 / B L 2 3 / J A Y ( 4 , 4 )   H ( 4 9 4 )  

R E A L   L 2  9 L A M 2 9 L S D l N 9  
E Q U I V A L E N C E t L 2   L A M 2 1  

L S D 1 8 r J A Y v N U  
C A L L  B D B ( K T B I D B , D ~  DO) 
YAH=l. 

D l = (   1 o - N U )  
IF(K.EQ*l.OR.K.EQ.KMAX)YAH=2o 
GA=G4M ( K 1 
OX=OMX I ( Kt 
RA=R(KI  
EN=N( MN I 
ENR=EN/RA 

OT=OYT ( K )  

DL=D*LZ*Dl*ENR 

R E G 4 0  
IF(YAH.EQ.2, I R E G = l o  

OXT=3.*OMXI ( K ) - O M T ( K I  
OTX=3.*0MT( K I - O M X I   ( K )  

H ( l r l ) = B  
H ( 1 9 2 ) = 0 .  

H (   1 9 4 ) = 0 .  
H (  l r 3 ) = 0 .  

H (   2 9 1  ) = O .  
H ( ~ ~ ~ ) = B * D ~ / ~ O + L ~ * D * D ~ / ~ ~ * O T X * * ~ * R E G  
H ( 2 9 3 ) = D L / 2 o * O T X * R E G  
H ( 2 9 4 ) = 0 0  

H(   392   )=DL*OTX*YAH/4 .  
H ( 3 9 1 ) = 0 .  

H ( ~ ~ ~ ) = L ~ * D * D ~ * ( Y A H * E N R ~ + ( ~ o + N U ) * G A * * ~ I  
H ( 3 , 4 ) = L 2  

ENR2=ENR**2 

GA2=GA**2 

H ( 4 9 1 ) = 0 .  
H(4 ,21=0.  

H ( 4 9 4 ) = 0 .  
H ( 4 9 3 ) = - 1 .  

JAY ( 1 9  1 )=NU*GA*B 

J A Y ( l q 3 ) = B * ( O X + N U * n T I  
JAY (1 9 2 )=NU*B*ENR 

J A Y ( 1 ~ 4 1 = 0 .  

J A Y ( 2 r 2 ) = - G A * H ( 2 , 2 )  
J A Y ( 2 9 1  )=-B*Dl*ENR/2.-DL/8.*OXT*OTX*R€G 

J A Y ( 2 9 3 ) = - G A * H ( 2 9 3 )  
J A Y ( 2 9 4 ) = 0 .  
JAY(3~l)=-L2*0*Dl*((l~+NU~*GA2*OX+ENR2/4~*0 
JAY(3 ,2)=-GA*DL/2 . * (   2 - *OT*( l .+NU)+OTX/2  
JAY(393)=-L2*0*01*(l.+NU+YAH)*GA*ENR2 

J A Y ( 4 , l  )=OX 
JAY ( 3  9 4  1 =L2*D1 *GA 

J A Y ( 4 , 2 ) = 0 .  
J A Y ( 4 , 3 ) = 0 .  
J A Y ( 4  4)=0. 
DO 1 i=lr4 

XT*YAH 1 
.*YAHI 
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1 H ( I I J ) = H { I , J ) / 2 . / D E L  
DO 1 J = l  4 
RETURN 
END 

SUBROUTINE  TEAETAIK 1 

C O M M O N / B L 5 / T T ( 1 O I ~ M T ( l O ~ ~ D T ( l O ~ ~ D M T ( l O )  
REAL NU,MT 

2 / I B L 2 / N ( 1 0 )   r M N I N I T  
3 / I B L 7 / M N M A X O ~ M A X D ~ 1 O ~ ~ M A X S ~ l O ~ ~ M A X S Y ~ l O ~ ~ I S ~ l O ~ l O ~ ~ J S ~  
4 ~ l O ) ~ J D ( 1 0 , 1 0 ) , I J S ( l O J  
1 / I B L 8 / L S T E P , I T R  
2 /  IBL13/   ITRMAX,   LSMAX 
8 / B L 6 / 2 ( 4 , 2 2 0 )  TSOEIOSEIALOAD 

O / B L 8 / R ( 2 0 0 ) , G A M ( 2 0 0 ) , O M T ( 2 0 0 )  
6 / B L 7 / D l y   S 1  

8 / B L l Z / T D L I   T D E L  
9 / B L 1 5 / N U , U j ( 1 0 )   t V l ( 1 0 )  ,Wl(l@) , V 2 ( 1 0 )   q U Z ( 1 0 )   , W 2 ( 1 0 ) , U 3 (  
OW3 ( 10) 
l / B L 2 7 / B X 3 ( 1 0 ) , B T 3 ( 1 0 )   B X T 3 ( 1 0 ) , B E 3 ( 1 C )  
Z / B L l O / P H I X (  10) v P H I T ( 1 6 )   , P H I (  l o !  
3 / B L 2 8 / E X X 3 ( l G ) r E T T 3 ( l ~ ) , E T X 3 ( l ~ ) , E X T 3 ( 1 ~ ~ ) ? E X 3 ( l C ) , E T 3 (  
3 / B L l l / O M X I ( 2 0 O ) , P H E E , T ' l , T 2  

l / I B L l / M N M A X  

RRA=l . /R(K)  

OX=OMX I ( K 1 
GA=GAM ( K 1 

D I M E N S I O N   T X ( 1 0  1 ,TTH( 10) , T X T (   1 0 1  

nT=nMT 1 K I 

1 

2 
3 

4 
5 

~ A L ~ " B D B ~ K , B s , D B , D s , D D )  

FM=Ml MI 
DO 1 M=l,MNMAXO 

E A L L ' T ~ o A D ~  K) 
TTS=TT(M)*ALOAD 
EX=(U3(M)-Ul(M))*TDLI+OX*W2(M)+OSE* 
E X T = . 5 * ( T D L I * ( V 3 ( M ) - V 1 0 ) -  EN *U2( 
ET= E N  * V 2 ( M ) * R R A + G A * U 2 ( M ) + O T * W 2 ( M )  

TTHIM)=BS* (ET+NU*EX) -TTS 
TX(M)=BS*(EX+NU*ET)-TTS 

T X T ( M ) = R S * D l * E X T  
DO 9 M = l ,  MNMAX 
<MF=O, SkS=ij; 
SMV=O. 

SMN=O. 
SME=O. 

S MT=O 
IF(N(M).EQ.O) GO TO 2 0  

IF(MAXL.EQ.0) GO T O  2 
DO 3 L = l r M A X L  
I = I S ( L . M )  

MAXL=MAXS(M) 

J = J s ( L ; M )  
SMF=SMF+TX( I 
SMS=SMS+TTH( 
SMV=SMV-PHIT 
SME=SME+PHIX 
S MN=SMN+TX I I 
SMT=SMT+TTH( 
MAXL=MAXD( M 1 
I F  ( MAXL.  EQ. 0 
00.5 L = l r M A X L  

1 GO TO 4 

J = J D (   L v M )  
I=ID(L,M) 

SMF=SMF+TX( I 
SMS=SMS-TTH( 
SMV=SMV+PHIT 
SME=SME-PHIX 
S MN=SMFI-TX ( I 
SMTzSMT-TTH( 
IF(MAXSY(M1.  

+ T X ( J ) * P H I X (  I )  
) + T T H (  J 1 * P H I T (  
) + P H I T ( J ) * T X T (  
I + P H I X ( J ) * T X T (  
T X ( J ) * P H I ( I )  
+ T T H (   J ) * P H I  (I) 
TO 10 

: (  BX3 ( M  )+BE 
+OSE*  ( BT3 ( 
M)*RRA-GA* 

I 1  

I) 
I )  

I )  
I) 
I) 
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R E A L   N U , M T , L A M 2 r M A S S , M A S  
SUBROUT I NE  FORCE ( K 1 

COMMON 
1 / I B L 1 / M N M A X / B L 5 / T T ( l O ~ ~ M T ( l O ~ ~ D T ( l O ~ ~ D M T ~ l O ~  
2 / I B L 2 / N ( 1 0 )   r M N I N I T  
3 / I B L 4 / K M A X v K L  
l / I B L 8 / L S T E P t T T R / I B L l 2 / K M A X l ~ K M A X 2 ~ N C O N V  
2 / I B L 1 3 / I T R M A X   L S M A X  

5 Z F 4 M ( 4   4 , 1 0 1  
5 / B L 4 / P ( 4 ~ 4 r 2 0 b ) , X ( 4 ~ 2 O ~ ) ~ Z F 1 M ( 4 ~ 4 ~ l O ) ~ Z ~ 2 M ( 4 , 4 , l O ) , Z ~ 3  
8 / B L 6 / Z 1 4 , 2 2 0 )   ~ S O E I O S E I A L O A D  
7 / B L 7 / D l , S l  
O / B L 8 / R ~ 2 0 0 ) ~ G A M ( 2 0 0 ~ ~ 0 M T ( 2 0 0 ~  
9/BL9/FFS(4~10)rELlS(4)vGE€S(4~10) 
3/BLll/OMX1(200)rPHEEvTO~T2 
1 / B L l 2 / T D L I , T D E L  
2 / B L 1 4 / L A M 2   L S D 1 8 , L S D l N  

4W3( 101 
3 / B L 1 5 / N U ~ U ~ ~ 1 O ~ ~ V 1 ~ l @ ~ ~ W l ~ l O ~ ~ V 2 ~ l O ~ ~ U 2 ~ l O ~ ~ W 2 ~ l O ~ ~ U 3 ~  
5 / B L 1 7 / D E L  

l / B L 2 7 / B X 3 1 1 0 )   B T 3 (  10) B X T 3 (  10) B E 3 (  10) 
2 / B L 2 8 / E X X 3 ( 1 0 ~ , E T T 3 ( l ~ ~ ~ E T X 3 ( l ~ ~ ~ E X T 3 ( 1 O ~ , E X 3 ~ l O ~ ~ E T 3 ~  

4 B E 2 (  10 1 

7 / B L 3 1 / D E L ~ Q ~ E X T 1 ( 1 0 ) / B L 3 / P R ( l O ~ ~ P X ( l O ) ~ P T ~ l O )  

l / B L 1 0 2 / D E L O A D / B L l O 3 / M A S S ( 2 0 0 )  

6 / B L 2 4 / D L ( 4 ~ 4 r l O ) r D G ( 4 , 4 ~ 1 . 0 ) , D F ( 4 r 4 , 1 0 )  
COMMON 

3 / B L 2 9 / B X 1 ~ 1 0 ~ ~ B T l ~ l O ~ ~ B X T l ~ l O ~ ~ B E l ~ l O ) ~ B X 2 ~ l @ ~ ~ B T 2 ~ 1 0 ~  

6 r E T X 2 ( 1 0 )  EXT2110)rEX2(10)rET2(10) 
5 / B L 3 0 / E X X 1 ~ 1 O ~ ~ E T T 1 ~ l O l ~ E T X l ~ l O ~ ~ E X l ~ l O ~ ~ E T l ~ l O ) ~ E X X 2 ~  

l/BL34/DEE(4,4r2OO),DST(4,4,200) 
COMMON / B L 1 0 0 / S O R D ~ T E E O / B L 1 O l / Z O ( 4 ~ 2 2 O ~ ~ Z 2 ~ 4 ~ 2 2 O ~ ~ Z 3 ~ 4  
D I M E N S I O N  G E E ( 4 )  

R S = R ( K )  

OX=OMXI  (K) 
GA=GAM( K 

OT=OMT ( K 1 
D L P = D l * L A M 2  

F D I F F ( A I B I C ) = ( - ~ . S * A + ~ . * ~ - . ~ * C ) / D E L  

R R = l . / R S  

C A L L   B D B ( K , B S , D B S , D , D D )  
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6 

*OX*EMT 
T IZ 1-23 
Z*ENE*O 
T IZ 1-23 
1 -DL2* ( 

) * T D E L  
(1TIZ1 
T*EMT) 
( 2 T I Z )  
GA* D MT 

*ALOAD 
1 +TDEL/DELS 
*TDE  L*  ALOAD 
1 *TOEL /DELS 
(M)-(OX*OT- 

) *TDEL/DELS 

8 
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SUBROUTINE  MATINV(A,N 
MATRIX   INVERSION  WITH 

~BYMTDETERMI  IPIVOTIINDEXINMAXI 1 s t  
ACCOMPANYING  SOLUTION OF L I N E A R  

DIMENSION  IP IVOT(N1   rA (NMAX,N) ,B (NMAX,MI   INOEX(NMAX,21  
EQUIVALENCE ( IROW,JROW) , ( ICOLUM,JCOLUM~, ( A M A X ,  T, sw 
I N I T I A L I Z A T I O N  

5 
7 
6 
10 
15 
2 0  
30 

R1=10.0**18 
I SCALE=O 

R 2 = 1 * O / R 1  

DO 20 J = l r N  
DETERM=l*O 

DO 550 I=l T N  
I P I V O T ( J ) = O  

L c SEARCH FOR PIVOT  ELEMENT 
40 
45 
50 
7@ 
60 

8 5  
8 0  

90 
95 

100 
105 
1 10 

AMAX=O* 0 
DO 1 0 5   J = l , N  

DO 100 K = l ,  N 
IF  ( I P I V O T ( J 1  

I F  ( I P I V O T ( K )  
IF ( A B S ( A M A X 1  
I ROW=J 
ICOLUM=K 

CONTINUE 
CONTINUE 
I PIVOT ( ICOLUM 

AMAX=A(J,K)  

-1 

-1 
-A 

35, 60 

00 74G 
K ) j ) 8 5 ,  

ICOLUM 1 

100,1co 

+1 

c INTERCHANGE ROWS TO PUT PIVOT  ELEMENT ON DIAGONAL 
130 
140 
150 
160 
2 00 
1 70 

205 
2 20 
2 10 

2 30 
2 50 
2 6 0  
2 70 
3 10 

E SCALE  THE  DETERMINANT 
L 
1009 
1@ 10 
1 0 0 5  

1 0 2 0  

1030 
1@ 40 

1c so 
1060 
1070 

140 

1@40 t 104C.11060 

c) 50 

3 90 

' T  1 0 5 0  1060 

t 1070,1070 
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IF(ABS(PIVOTI)-R1)32O~1080~1080 
1 0 8 0   P I V O T I = P I V O T I / R l  

I SCALE= I S C A L E + l  
GO TO 3 2 0  

1090 IF(ABS~PIVOTI)-R2)2000~2000~320 
2 0 0 0   P I V O T I = P I V O T I * R l  

2 0 1 0   P I V O T I = P I V O T I * R I  

I S C A L E r I S C A L E - 1  
IF(ABS(PIVOTI)-R2)2010~2010~320 

3 2 0  DETERM=DETERM*PIVOTI 
ISCALE=ISCALE-1 

L 

E. D I V I D E   P I V O T  ROW BY PIVOT  ELEMENT 
L 

3 3 0  A (  ICOLUM,ItOLUM)=l.O 
340 DO 3 5 0  L = l  N 
3 5 0  A (  ICOLUM,L~=A( ICOLUM,L)/PIVOT 
3 5 5   I F ( M )   3 8 0 ,   3 8 0 ,  360 
3 6 0  DO 370 L = l  t M 
3 7 0   B ( I C O L U M v L ) = B (   I C O L U M , L ) / P I V O T  

L 
E.. REDUCE NON-PIVOT ROWS 
L 

3 80 
3 99 
4 00 

4 3@ 

4 5 5  
4 50 

4 60 
5 00 
5 50 

4 2 0  

DO 550  L1=1,N 

T = A ( L l r I C O L U M )  
I F ( L 1 - I C O L U M )  

A(L l , ICOLUM)=O 
DO 4 5 0   L = l r N  
A ( L l v L I = A ( L l r L  
I F ( M I   5 5 0 ,  550 
DO 500 L = l r M  
B ( L l r L ) = B ( L l r L  
CONTINUE 

400, 550, 400 

.o 
) - A (  ICOLUM,LJ*T 
9 460 

)-B(  ICOLUM,L)*T 

L 

5 INTERCHANGE COLUMNS 
L 

600 
6 10 
6 20 
6 3 0  

6 5 0  
6 40 

6 60 

7 00 
670 

7 0 5  

7 40 
7 1 0  

DO 710 I = l , N  
I =N+l-T 

JROW=INDEX(Lv l  

DO 7 0 5   K = l c  N 
SWAP=A( K,  JROW) 
A(KvJROW)=A(K,  
A(K,JCOLUM)=SW 

I F " ( I N D E X ( L , ~ )  

JCOLUM= I NDEX ( L  

CONTINUE 
CONTINUE 
RETURN 
END 

- I  NDE 
1 
T 2 )  

JCOLU 
AP 

6 3 @  9 7112 t 63 0 

SUBROUTINE  PMATRX 

COMMON 
REAL  JAY 

2 / I B L 2 / N ( l O ) r M N I N I T  
3 / I B L 3 / M O   M l r M 2 y M 3  

5 / I B L 5 / I B C I N L , I B C F N L  
6 / B L l / A ( 4 , 4 )   B E E ( 4  4 )  C ( 4 r 4 )  

8ZF4M(4  4 ,101 

A / B L 2 3 / J A Y ( 4 , 4 ) 1 H ( 4  4)  

C / B L 2 5 / E ( 4 , 4 ) r F ( 4 , 4 ) ( G ( 4 r 4 )  

l / I B L l / M N M A X  

4/ I BL4/KMAX,  KL 

5 / B L 4 / P ( 4 r 4 , 2 0 0 1   , X 1 4 ~ $ 0 0 ) , Z F l M ( 4 r 4 , 1 0 )   r Z F 2 M ( 4 ,  

9 /BL13 /6MEG1(4 ,4 )   rCAPL l (4 .4 )   rOMEGL(494)   ,CAPLL(  

B / B L 2 4 / D L ( 4 r 4 1 1 0 )   r D E ( 4 , 4 r l O ) , r D F ( 4 r 4 , 1 0 )  

14)~DGG(4r4)rZF1(4r4~~ZF2(4r4)~ZFP0(4~4)~ZFP1( 
D I M E N S I O N   P A T A ( 4 r 4 )  P B T A ( 4 , 4 ) , P O T A ( 4 r 4 ) r P J T A (  

2 T ( 4 ) r I N D E X ( 4 , 2 )   C L 0 ( 4 , 4 J r C L 1 ( 4 , 4 )   C L 2 ( 4   4 1 7 6 1  

1 ( Z F P O ( 1 ) ~ P A T A ( l J ) ~ ( Z F P l ( l ) ~ P B T A ( 1 ) ) 1 0 F P 2 ~ 1 ~ ~  
2 , ( Z F l ( l ) r D L ~ ( l ~ ) , ( Z F 2 ~ 1 ~ ~ P T R ( l ~ )  

EQUIVALENCE ( c L ~ ( ~ ) , z F ~ M ( ~ I ) , ( c L ~ I ~ ) ~ z F ~ M ( ~ ) )  

4 , 1 0 ) r Z F 3  

414) * U N I T  
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4 

3 

6 

5 

7 

1 

10 

14 

12 

90 

13 

11 
20 
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2 3  

4 2  

41 

44 

4 3  

4 6  

4@ 
4 5  

3 0 

3 5  

IF( 1BCFNLoLT.O)  KLAST=KL 
DO 23 K=2,KLAST 
DO 2 3  MN=MNINITvMNMAX 
CALL  EFG(K9MN) 

CALL PANDDIKIMN) 
I F (  1BCFNLoLT.O) GO TO 30 
DO 40 MN=MNINIT MNMAX 

C A L L  ABC 

IKL=MN*KMAX-1 
JKL=KMAX*MN 
CALL  HJ(KMAX9MN) 
DO 41 I = l r 4  
DO 41 J=l,4 
SUMO=O. 

SUMJ=Oo 
SUMP=Oo 

DO 42 L = l r 4  
SUMO=SUMO+OMEGL(I,L)*H(L,J 
SUMP=SUMP+P(I  L,TKL)*P(L,J 

PATA( IvJ I=SUMO 
PBTA(I~J)=UNIT(IIJ)-SUMP 
P J T A ( I , J ) = S U M J + C A P L L ( I , J )  
DO 4 3  1=1,4 
DO 4 3   J = 1 , 4  

SUMJP=@o 

DO 44 L=1,4 
SUMOM=@ 

SUMOP=SUMOP+PATA( I ,L) *PBTA 
SUMJP=SUMJP+PJTA ( I  , L1 *P ( L  
S U M O M = S U M O M - P A T A ( I , L ) * P ( L ,  
ZF1(  I r J  )=SUMOP-SUMJP 
ZF2(19J)=SUMOM-PJTA(I IJ) 
C A L L   M A T I N V ( Z F 1 , 4 t Z F 2 r 4 r D E  
DO 4 5  I = l r 4  
DO 4 5  J=1,4 
SZF3=0. 
SZF4=0. 
DO 46 L=l ,4  
SZF3=SZF3+ZFl(IqL)*PATA(L, 
SZF4=SZF4-ZF l (  It L )*OMEGL( L 
ZF3M( I I J ,MN)=SZF3 
ZF4M( IvJ ,MN)=SZF4  
Z F l M (  1, J ,MN)=ZFl  ( I  I J) 
Z F ~ M ( I , J I M N ) = Z F ~ ( I , J )  

S U M J = S U M J + O M E ~ L ( I , L ) * J A Y ( L  

SUMOP=O. 

CONTINUE 
RFTIIRN 
i% ' ?~Y"MN=MNI NI T, MNMAX 
IKL=MN*KMAX-1 
NN=NI MN 1 . .. . 
IF (NN ' " "oGT.3 )  GO TO 31 
I F I N N o G T o P I  GO TO 3 0 0  
I F ( N N  oGT.1) GO TO 3 3  
I F ( N N  oGT.0) GO TO 34 

3 r 1 , I K L )  

3 9 3 ,   I K L ) + l .  
3 ,291KL)  

3 9 4 v I K L )  
4, 1 9  I K L  J 
4 1 2 r I K L )  
4 , 3 r I K L )  
4 9 4 9  I K L  )+lo 

TERMvIPIVOTvINDEXv4,ISCALE) 

J )  
t J )  
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3 00 

34 

60 

33 

70 

3 1  

C A L L   M A T I N V ( Z F  
GO TO 3 1  

GO T O  3 1  
M3=MN 

Ml=MN 

DO 60 I = l r 4  
DO 60 J=1,4 

C L l ( I , J ) = O .  
Z F P l ( I , J ) = O .  

Z F P l ( l t Z ) = P ( l ,  
Z F P l ( l r l ) = P ( l r  

Z F P l ( l r 4 ) = P ( 1 ,  
Z F P 1 ( 1 ~ 3 ) = P ( l r  

Z F P 1 (  21 1)=10 
Z F P 1 ( 2 7 2 1 = - 1 .  
Z F P 1 ( 3 , 3 ) = 1 .  

C L l ( l , l ) = l .  
Z F P 1 ( 4 r 4 ) = 1 .  

C A L L   M A T I N V (  ZF 
GO TO 3 1  
M2=MN 
DO 7C J = l r 4  

C L ~ ( I I J ) = O .  
DO 70  I = l r 4  

Z F P 2 (  I, J )=O. 
Z F P 2 ( l r l ) = 1 .  
Z F P 2 ( 2 v 2 1 = 1 .  
Z F P 2 ( 3 , 3 ) = 1 0  

Z F P 2 ( 4 , 2 ) = P ( 4 r  
Z F P 2 ( 4 9   1 1 = P ( 4 ,  

Z F P 2 (  4 9  3 ) = P  (41  
Z F P 2 ( 4 , 4 ) = P ( 4 ,  
C L 2 ( 4 , 4 1 = 1 .  

C O N T I N U E  
C A L L   M A T I N V ( Z F  

RETURN 
END 

1 , I K L )  
2 9 I K L )  

41 I K L  1+1. 
39 I K L )  

P 2  14, C L 2 ,  

4, DETERM, 

4 r D E T E R M r  

4,DETERMp 

I P I V O T ,  

I P I V O T ,  

I P I V O T ,  

I N D E X ,  

I N D E X  1 

.XT 7 LAM, 

X S Y ( 1 0 1  

I N D E X ,  

4, I 

41 I 

S C A L E  1 

S C A L E  1 

SCALE 1 

LAM2,MASS 

t I S ( l O , l G I r J S (  
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205 
301 

TX(MP)=BS*Dl*(2 
I4=13+1 
TX(M2) = TX(M2 

TTH(M2)  =-TX(MZ 
TXT(M2)  =-TX(M2 
MTHIME)  =-MX(ME 
MXT(M2)  =-MX(MZ 
RETURN 
CONTINUE 
DO 302  MN=l*MNM 
Ul(MN)=UZ(MN) 
Wl(MN)=WZ(MN) 
Vl(MN)=VZ(MNI 

A X 0  

)/DEL+OMXI(l)*Z(3, 

/DEL 



S U B R O U T I N E   P H I   B E T (  K 1 
R E A L  NU 

2 /  
3 /  
3/ 
4 ,  
6 /  
2 1  
8/ 

OMMON 

T B L Z / N  ( 10 
I B L l / M N M A  

I B L 4 / K M A X  
I B L 7 / M N M A  

I B L 1 2 / K M A  

8 L 6 / z ( 4 ~ 2  
IBL13 /  I T R  

1 0 ) ~ J D 1 1 0  

X 
1 T M N I N I T  

X O , M A X D ( l C ) T M A X S ( l O ) , M A X S Y ( l O ~ ~ I S ( l O ~ l C ) ~ J S ~  K L  

910) ~ I J s ( 1 0 )  

MAX,  LSMAX 
X l r K M A X 2 , N C O N V  

Z O ~ T S O E , O S E I A L O A D  
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SUBROUT I NE EFG ( K MN 1 
COMMON 

l / I B L 2 / N N ( l O ) , M N I N I T  
O/BL8/R(200)~GAM(200)~0MT~200~ 
3 / B L l l / O M X I ( 2 0 0 )   , P H E E r T g r T 2  

4 / B L 1 4 / L A M 2   L S D 1 8 , L S D l N  
4 / B L 2 0 / D E O M X   ( 2 0 0  1 

5 / B L 1 5 / N U ~ U ~ ~ l O ~ ~ V 1 ~ l O ~ ~ W l ~ l O ~ ~ V 2 ~ l ~ ~ ~ U 2 ~  
6W3( 10 1 
7/BL25/€(4,4)rF(4,4),G(4,4) 
1 / B L 1 0 2 / D E L O A D / R L 1 0 3 / M A S S ( 2 0 0 ~  

COMMON / B L l @ O / S O R D , T E E O / B L 1 O l / Z 0 ( 4 ~ 2 2 O ) ~  

LSDlN9MASSrMAS 

CALL 
F ( 1 .  

REAL NUIN, L A M 2 , L S D l E r l  

D l = (  l;-NU) 
RA=R I K I G&=GA'M( K 1 
OX=OMXI ( K )  
OT=OMT ( K 1 
DEX=DEOMX(K) 
REX=(3.*0T-OX) 
GA2=GA**2 

OTX=OT*OX 
RXE=( 3. *OX-OT) 

DDNLR=DNLR*DD/ 
DNLR=LAM2*D*N* 

E ( 2 1 2 ) = B * D 1 / 2 .  
E ( 2 9 3 1 =DNLR*RE 

D l  
D 
+L 
X 

.<.A, . .*,-, 
F(3,2)=DNLR*(3.*GA*OX-GA*OT*(5.+2.*NU)-DEX)+D@NLR*REX 

l+LAM2*DD*Dl*((lo+NU)*GA2+2o*RAN) 
F ( 3 , 3 ) = - L A M 2 * D * D l * ( ( l o + N U ) * ( 2 o * G A * ~ X * O T + G A * * 3 ) + 2 o * G A * R  

F(3,4)=LAM2*GA*(2. -NU) 



SUBROUTINE  OUTPUT(  IMODE 1 
REAL N U , M T , M X t M T H , M X T , M T S ~ K X t K T t K X T t L A M t L A M 2 , ! 4 A S S  
COMMON / I B L Z / N ( l C ) r M N I N I T  

Z / I B L 3 / M O t M l r M 2 , M 3  
l / I B L 4 / K M A X , K L  

3 / I B L 7 / M N M A X O ~ M A X D ~ 1 O ~ ~ M A X S ~ l O ~ ~ M A X S Y ~ l O ~ t I S ~ l ~ t l O  
2 / I B L 5 / I B C I N L , I B C F N L  

4 t l O ) , J D ( l O t 1 0 ) , I J S ( l ~ )  
5 / I B L B / L S T E P ,   I T R  

7 / I B L l Z / K M A X l t K M A X 2 t N C O N V  
6 / I B L l O / I F R E Q t N T H M A X  

2 / I B L 1 3 /   I T R M A X t   L S M A X  

l , Z F 3 M ( 4 t 4 , 1 0 )   Z F 4 M ( 4  4 10) 

8 / B L 6 / Z ( 4 9 2 Z O )   t S O E t O S E t  ALOAD 
9 / B L 7 / D l t  S 1  
O / B L 8 / R ( 2 0 0 ) , G A M ( 2 0 0 ) ~ O M T ( 2 O O 1  
3 / B L l l / O M X I ( 2 0 0 )   t P H E E p T O t T 2  

3 / B L 1 2 / T D L I   t T D E L  
1/BL1O/PHIX(1C)~PHIT(lO~tPHI(lO) 
4 / B L 1 4 / L A M 2   L S D 1 8 t L S D l N  

C O M M O N / B L 4 / P ( 4 t 4 , 2 0 0 )   , X ( 4 , 2 0 O ) t Z F l Y ( 4 , 4 r l O )   t Z F 2 M (  

COMMON/BLS/TTI 101 , M T l  16) t D T (  10) tDMT( 10) 

4/BLZO/DEOMX( 200 1 

5 / B L 1 5 / N U ~ U ~ ~ 1 C ~ t V 1 ~ l O ~ ~ W l ~ l O ~ ~ V 2 ~ l ~ ~ t U 2 ~ l O ~ t W 2 ~ l O  
6W3( 10 1 
8 / B L 2 7 / B X 3 (   1 0 ) 9 B T 3 (  10)  9 B X T 3 I  10)  t B E 3 (  10) 

l / B L 3 1 / D E L S Q , E X T l ( l @ )  
C O M M O N / B L 3 2 / T K N , E L A S T , C H A R , S I G O  

3 / B L 1 9 / T H ( 6 )  
2 / B L 1 7 / D E L  

l / B L 1 0 2 / D E L O A D / B L 1 0 3 / M A S S ( 2 0 0 )  
COMMON / B L 1 0 0 / S O R D ~ T E E O / B L 1 0 l / Z O ~ 4 t 2 2 0 ~   , Z 2 ( 4 , 2 2 0 )  

2 / B L l l O / T X ~ 1 0 ~ ~ T T H ~ 1 O ~ ~ T X T ~ l O ~ t ~ X ~ l O ~ ~ M T H ~ l O ~ ~ ~ X T ~  
3 / B L l l l / A B Z , A B Z O t A B Z N , A B Z 3  DD2 

ABZO=SIGO/ELAST 
D I M E N S I O N   P T F ( 2 0 0 ) r P F ( 2 0 0 {  

GO TO 182  

D T I = T I * T E E O  

W R I T E ( 6 1 1 0 1 )  L S T E P t A L O A D t I T R  
IF(SORD.NE.0) GO TO 1 8 1  

I 1  TI=LSTEP*DELOAD 

W R I T E ( 6 , 1 5 1 )   L S T E P , T I , D T I , I T R  



1 8 2  

1 

LAM=TKN/CHAR 
ENL=1 

ABZ=SIGO*TKN 

ABZN=CHAR*SIGO/ELAST 
AB23  =ABZ*TKN+TKN/CHAR 

DD2=1o-NU**2 
I F (  ITRMAX. EQo 1 )  ENL=@o 

D 2 1 = 1 0 / D D 2  
D P I = l o / S l  
D N I = l o / D l  
TDLSQI=.5/DELSQ 
IF(NTHMAXoEQ.0) GO  TO 991 

DO 1 MN=lrMkMAXO 
DO 21NTH=1, NTHMAX 

I l = l + ( M N - l ) * K M A X Z  
I Z = I l + l  
U l ( M N ) = Z ( l , I l )  
U Z ( M N ) = Z ( l ,   1 2 )  
V l ( M N ) = Z ( Z , I l )  

W l ( M N ) = Z ( 3 , 1 1 )  
V Z ( M I J ) = Z ( Z ,   1 2 )  

W Z ( M N ) = Z ( 3 r   I 2 1  

W R I T E ( 6 , 1 1 6 )   T H E T  
DO 1 2 1   K = l r K M A X  

CALL  BDB(K,BS,DB,DSrDD) 
I F ( K o E Q . l o A N D o I B C I N L o L T o 0 )  CALL  POLE(K)  
I F ( K o E Q o l o A N D o I B C I N L o L T o 0 )  GO TO 999 

I F ( K o E Q o K M A X o A N D o I B C F N L o L T o 0 )  GO TO 999 
I F ( K o E Q . K M A X o A N D o I B C F N L o L T o Q )  C A L L   P O L E ( K 1  

THET=TH(  NTH) 

K l = K + l  

C A L L   P H I B E T ( K 1  
DEX=DEOMX( K 1 

OX=OMXI(K)  
OT=OMT ( K 1 
GA=GAM ( K 1 
DCXT=OX-OT 
GDO=GA*DOXT 
DDPD=DDZ*DS 

EN=N(  MNI 

C A L L   T L O A D ( K )  
ENR=EN*RRA 

TTS=TT I MN) *ALOAD 
E X = ( U 3 ( M N ) - U l ( M N ) ) + T D L I  +OX*WP(MN) + ENL*OSE*(BX3(MN)+ 
ET=ENR*VZ(MN) + GA*U2(MN) + OT+WZ(MN) + ENL*OSE*(BT3(M 
E X T = . 5 * ( ( V 3 ( M N ) - V l ( M N )   ) * T D L I  - ENR*UZ(MN) - GA*VZ(MN) 

1 + ENL*SOE*BXT3 (MN 1 1 
KT=ENR*PHIT(MN) + GA*PHIX(MN)  

1 + GDO*V2(MNI + O T * ( V 3 ( M N ) - V l ( M N ) ) * T D L I  
KXT=.5*(ENR*(-PHIX(MN)  -GA*W2(MN) + ( W 3 ( M N ) - W l ( M N ) ) * T D  

2 -GA*PHIT(MN)-DOXT*PHI(MN)) 

R R A = l o / R ( K )  

DO 3 MN=lqMNMAXO 

TXtMN)=BS* (EX+NU*ET) -TTS 
TTH(MN)=BS*(ET+NU*EX)-TTS 
TXT(MN)=BS*D l *EXT 
M K l = K l + I M N - l ) * K M A X Z  

MTH(MN)=NU*MX(MN)+DDZD*KT-Dl*MT(MN)*ALOAD 

M K l l = M K l + l  
MXT(MNI=DS*Dl*KXT 

MKKl=MK 1-1 
QS(MN)=SIGO*TKN*LAM2*(GA*MX(MN)+(Z(4,MKll)-Z(4,MKKl))* 

MX(MN)=Z(4,MK11 

1 +ENR*MXT(  MN)-GA*MTH(MN) 1 

PTH(MN) = MTH(MN)*ABZ3 
MX(MN)=MX(MN)*ABZ3 

MXT(MNI=MXT(MN)*ABZ3 
TX(MN)=TX(MN)*ABZ 

TXT(MN)=TXT(MNI*ABZ 
TTH(MN)=TTH(MN)*ABZ 

PHIX(MN)=PHIX(MN)*ABZO 
P H I T ( M N ) = P H I T ( M N ) * A B Z O  



3 

9 99 

4 29 
72  

PHI (MN)=PHI (MN)*ABZO 
Ul (MN)=UE(MN)  
UZ(MN)=US(MN) 
V l ( M N ) = V Z ( M N )  
VZ(MN)=V3(MN) 

WZ(MN)=W3(MN) 
W 1  (MN) =W2 (MN) 

FK=K-1 
FIFREQ=I FREQ 
K T S T = ( K - l ) / I F R E Q  
FKTST=KTST 
FKTEST=FK/FIFREQ-FKTST 
IF(K.EQ.1.OR.K.EQ.KMAX 
IF(FKTEST.NE.0. )  GO TO 

1 GO 
2 

TO 999 
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C 

114 F O R M A T ( ~ X I I ~ , ~ X , ~ E ~ ~ . ~ )  
2 H  N STHETA 1 4 H  Q S 1 

1 1 5   F O R M A T ( 7 H  N 1 6 H  N S  1 6 H  N THETA 
1 6 H  M THETA  15H l S T H E T A   1 6 H  

116 FORMAT(  1HO 84H 
l A N D   R O T A T I d N S  FOLLOW  FOR  THETA =E15 ,6 / / / )  

116 FORMAT ( 1H1,   84H  THE SUMMED FORCES, MOMENTS, D I  
THE SUMMED FORCES, MOMENTS, D I  

2 CONTINUE 
1 2 1   C O N T I N U E  

DO 660 K=l,KMAX 
FK=K- l  
F IFREQ=IFREQ 
K T S T = ( K - l ) / I F R E Q  
FKTST=KTST 
FKTEST=FK/FIFREQ-FKTST 
IF(K.EQo1.ORoKoEQoKMAX) GO TO 6 6 1  
IF(FKTESToNE.0.)  GO TO 6 5 8  

W R I T E ( 6 . 2 1 8 )  K ,X ( l ,K ) rX (2 ,K ) ,X (3 rK) ,X (4 ,K ) rPTFO,PF(K) ,PF(K  
661 IF(K.EQ.1)   WRITE(6 ,217)  

2 1 7   F O R M A T ( / / 8 H   S T A T I O N f 1 5 H  U 
1 w  1 6 H   1 6 H   P H I   T H E T A 1 6 H  P H I  S 
2 1 )  

1 6 H  V 

2 1 8   F O R M A T ( l X , 1 3 , 3 X , 6 E 1 6 . 4 )  
658 DO 6 5 9  I=1,4 
6 5 9  X (  I t K ) = O o  
660 CONTINUE 

2 1   C O N T I N U E  
991 I F ( I M O D E o L E o 0 )  RETURN 

DO 5 3 4  MN=l,MNMAXO 
W R I T E ( 6 p 7 4 9 )   N ( M N )  

DO 5 2 1  MM=l,MNMAXO 

1 2 = I l + l  
Il=l+( “-1 1 *KMAXZ 

U l ( M M ) = Z ( l , I l )  
U 2 ( M M ) = Z ( l r I 2 )  
V l ( M M ) = Z ( 2 r I l )  
V 2 ( M M ) = Z ( 2 ,   1 2 )  

W2(MM)=Z(3 ,12 )  
W l ( M M ) = Z ( 3 , 1 1 )  

DO 4 4 5   K = l ,  KMAX 

CALL  BDR(K,BS,DB,DS,DD) 
I F ( K . E Q o l o A N D o I B C I N L ~ L T . 0 )  CALL  POLE(K)  
I F ( K o E Q . K M A X o A N D o I B C F N L o L T o 0 I  C A L L   P O L E ( K )  

749 F O R M A T ( l H l r 4 0 X p 2 7 H  MODAL OUTPUT FOR MODE N = 1 3 9 8 H  FOL 

5 2 1   C O N T I N U E  

K l = K + l  

TXZ=TX(MNI  
TTHZ=TTH ( MN 1 
TXTZ=TXT(MN) 
AMXZ=MX ( MN 1 
AMTHZ=MTH( MN) 
AMXTZ=MXT(MN) 
QSZ=QS ( MN) 
X ( l r K ) = P H I X ( M N )  
X (2 ,K )=PHJT(MN)  
X ( 3 , K ) = P H I ( M N )  
I F ( K . E Q . 1 o A N D o I B C I N L . L T . O )  GO TO 5 8 3  
I F ( K o E Q o K M A X . A N D o I B C F N L o L T ~ 0 )  GO TO 5 8 3  
CALL   PHI   BET  (K )  
DEX=DEOMX( K 1 
OX=OMXI ( K )  
OT=OMT ( K 1 
GA=GAM ( K ) 
DOXT=OX-OT 
GDO=GA*DOXT 
DD2D=DD2*DS 
EN=N( MN 
ENR=EN*RRA 
CALL TLOAD(K1  
TTS=TT(  MN)*ALOAD 
E X = I U 3 ( M N ) - U l ( M N ) ) * T D L I  +OX*W2(MN) + ENL*OSE*(BX3(MN)+ 

R R A = l o / R ( K )  
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I 

ET=ENR*VZ(MN) + GA*UP(MN) + OT*WP(MN) + ENL*OSE*(B 
EXT=.5*( ( V 3 ( M N ) - V l ( M N )   ) * T D L I  - ENR*UZ(MN) - GA*V2( 

KT=ENR*PHIT(MN) + GA*PHIX(MN) 
KXT=.S*(ENR*(-PHIX(MN) -GA*WP(MN) + (W3(MN) -Wl (MN)  

1 + ENL*SOE*BXT3 ( MN 1 1 

2 -GA*PHIT(MN) -DOXT*PHI (MN) )  
1 + GDO*VZ(MN) + O T * ( V 3 ( M N ) - V l ( M N ) ) * T D L I  

TXZ = (BS*(   EX+NU*ETI-TTS)*ABZ 
TTHZ = (BS*(ET+NU*EXI-TTS)*ABZ 
TXTZ = BS*Dl*EXT*ABZ 
M K l = K l +  ( MN-1 )*KMAX2 

AMTHZ = NU*AMXZ+DD2D*KT-Dl*MT(MN)*ALOAD 
AMXTZ = DS*Dl*KXT 
M K l l = M K l + l  
MKKlZMK1-1 
Q S Z  = SIGO*TKN*LAM2*(GA*AMXZ + (  Z ( 4 q M K l l ) - Z ( 4 r M K K  

AMXZ = Z ( 4 r M K 1 )  

1 +ENR*AMXTZ  -GA*AMTHZ 1 
AMXZ=AMXZ*ABZ3 
AMTHZ=AMTHZ*ABZ3 
AMXTZ=AMXTZ*ABZ3 
X ( 1 . K )  = PHIX(MN)*ABZO 

x ( 3 ~ K )   = P H I ( M N ) * A B Z O  
X(2.K) = P H I T ( M N I * A B Z O  

DO 5 3 3  MM=l,MNMAXO 
U l ( M M ) = U 2 ( M M )  
UE(MM)=U3(MM) 
V l ( M M ) = V 2 ( M M )  
V2(MM  V3(MM) 

5 3 3  WZ(MM)=W3(MM) 
Wl (MMI%2(MM)  

FK=K- l  
F I FREQ= I FREQ 
K T S T = ( K - l ) / I F R E Q  

FKTEST=FK/FIFREQ-FKTST 
FKTST=KTST 

IF(KoEQo1oOR.KoEQoKMAX) GO TO 5 8 3  
1FIFKTEST.NEoGo) GO T O  4 4 5  

I F ( K o E Q . 1 )   W R I T E ( 6 r l l 7 )  
W R I T E ( 6 . 1 1 8 )  K * T X Z , T T H Z , T X T Z . Q S Z q A M X Z , A " X T Z  

W R I T E ( 6 . 2 1 7 )  
DO 446 K = l  9 KMAX 
FK=K-1 

K T S T = ( K - l ) / I F R E Q  
F I  FREQ= I FREQ 

FKTEST=FK/FIFREQ-FKTST 
FKTST=KTST 

583 CONTINUE 

445   CONTINUE 

IF(KoEQo1oORoKoEQ.KMAX) GO TO 593 
I F ( F K T E S T o N E o 0 o  1 GO TO 446 

UP=Z ( 1, KZ)   *ABZN 
VP=Z (2 9 KZ)   *ABZN 
WP=Z(3,KZ)*ABZN 
w R I T E ( 6 ~ 2 1 8 )  K T U P , V P I W P I X ( ~ T K ) , X ( ~ , K ) , ~ ( ~ . K )  

5 9 3   K Z = K + l + ( M N - l   ) * K M A X 2  

446 CONTINUE 
534   CONTINUE 

RETURN 
END 

T 3 ( M  
MN 1 

1 *TD 
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TABLE I. IM€ORTANT  FORTRAN VARYLBLFS 

DEE(4,4,200) 
DELSD 

DST(4,4,200) 

Dl 

E(4,4) 
ELL(&) 
EL1 (4) 

 ET^ (10) 
ET2 (10) 
ET3(10) 

ETT~ (lo) 
ETE (10) 
ETT3 (10) 

ETXl( 10) 
E"2 (10) 
ETX3(10) 

Definition 

A matrix 
- 
B matrix 

@ a t  i - 1, 
i, and i + 1 

Be a t  i - 1, 

i, and i + 1 

8, a t  i - 1, 

i, and  i + 1 

pse a t  i - 1, 

i, and i + 1 

DEL@AD*DEL@b 

1 

1 - v  

E matrix 
aK 
a1 

8, a t  i - 1, 

i, and i + 1 

Tee a t  i - 1 

i, and i + 1 

Tes a t  i - 1 

i, and i + 1 
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a4741 

GEE (4) 

GEES(4,lO) 

H(474) 

ID(10,lO) 

IJS (10) 

IS(10,10) 

ITR 

JAY(4,h) 

m(10,10) 

Definition 

Is at i - 1, 
i,  and i + 1 

Is, at i - 1 
i,  and i -F 1 

Is, at i - 1, 
i,  and i + 1 

F matrix 
f matrix 
f matrix 
1 

K 

G matrix 
- 
g matrix 

g matrix 
- 
1 

H matrix 

See description of 
subroutine MODES 

See  description of 
subroutine MODES 

See description of 
subroutine MODES 

Iteration  number 

J matrix 

See description of 
subroutine MODES 
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, .. -. .. . "" . . . . . "" 

FORTRAN Variable 

KL 
m 

Js(10,lO) 

MAXSY (10) 

MO, Ml, E, and M3 

P(4,4,200) 

PHI (10) 

PHIT (10) 

PHIX(l0) 

Definition 

KMRX-1 
KL-1 

See description of 
subrountine MODES 

See description of 
subroutine MODES 

See description of 
subroutine MODES 

See description of 
subroutine MODES 

N(MO)=O,  N(Ml)=l, 
N(M2)=2,  N(M3)=3 

n 

P matrix 

@, cp 

@s, (P, 



FORTWIN Variable 

TDm 
TDLI 

z(4,220) 

zD@T(4,220) 

Definit ion 

2A 

1/(=) 

e 

U,  u a t  i - 1, 
i, and i + 1 

V, v a t  i - 1, 
i, and i -t 1 

W, w a t  i - 1, 
i, and i + 1 

x matrix 

z matrix 

az / a t  

z a t  t - 6 t  

z a t  t - 26t 

z a t  t - 36t 

I 
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- 500 Read Input Data : 

1 
i 
I 
I 

Call GE@M 

Call BDB 

If s t a t i c   ana lys i s ,  C a l l  
F L @ f U l  and TL@AD 

If dynamic analysis  with nonzero 
in i t i a l   cond i t ions  and t = O ,  
C a l l  INITL 

Call PMATRX Estimate Have t h e  maximum 1- so lu t ion   a t=   load  or  time  steps 
I - 400 Cal l  W Z  next  step  been  taken 

1 t Linear  analysis yes - Cal l  @UTPUT 

If modal coupling  matrices  have f 
not   been  set  up, Call M@DES 

1 no 

1 
1 no 

Has solut ion converged-yes- 

-no-  Have the  maximum number of i t e r a t ions  
been  taken 

- no Sta t ic   ana lys i s  1 Yes 

Yes  Have the maximum load changes  been taken 

Reduce DEL@AD 

Figure 10. Flow of Program Logic i n  MAIN 
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